HK
Hilal Kazan
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(50% Open Access)
Cited by:
2,844
h-index:
18
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A compendium of RNA-binding motifs for decoding gene regulation

Debashish Ray et al.Jul 1, 2013
RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes. This study reports a global analysis of binding sites for over 200 RNA-binding proteins (RBPs) from 24 species; conserved RNA-binding motifs are identified, and their analysis allows prediction of interaction sites based on the sequence of the RNA-binding domain alone. The sequence and context of RNA that dictate the interaction of RNA-binding proteins with their targets have tended to be studied on a protein-by-protein basis. A study by Timothy Hughes and colleagues now reports a global analysis of binding sites for more than 200 RNA-binding proteins from 24 eukaryote species. Conserved RNA-binding motifs are identified, and their analysis allows for the prediction of interaction sites on the basis of the RNA-binding domain sequence alone. The motifs also are found to reflect each molecule's function, which will aid in understanding the roles of previously uncharacterized examples.
0
Citation1,368
0
Save
0

RNAcontext: A New Method for Learning the Sequence and Structure Binding Preferences of RNA-Binding Proteins

Hilal Kazan et al.Jul 1, 2010
Metazoan genomes encode hundreds of RNA-binding proteins (RBPs). These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.
0
Citation263
0
Save
4

PersonaDrive: A Method for the Identification and Prioritization of Personalized Cancer Drivers

Cesim Erten et al.Oct 12, 2021
Abstract Motivation A major challenge in cancer genomics is to distinguish the driver mutations that are causally linked to cancer from passenger mutations that do not contribute to cancer development. The majority of existing methods provide a single driver gene list for the entire cohort of patients. However, since mutation profiles of patients from the same cancer type show a high degree of heterogeneity, a more ideal approach is to identify patient-specific drivers. Results We propose a novel method that integrates genomic data, biological pathways, and protein connectivity information for personalized identification of driver genes. The method is formulated on a personalized bipartite graph for each patient. Our approach provides a personalized ranking of the mutated genes of a patient based on the sum of weighted ‘pairwise pathway coverage’ scores across all the patients, where appropriate pairwise patient similarity scores are used as weights to normalize these coverage scores. We compare our method against three state-of-the-art patient-specific cancer gene prioritization methods. The comparisons are with respect to a novel evaluation method that takes into account the personalized nature of the problem. We show that our approach outperforms the existing alternatives for both the TCGA and the cell-line data. Additionally, we show that the KEGG/Reactome pathways enriched in our ranked genes and those that are enriched in cell lines’ reference sets overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods. Our findings can provide valuable information towards the development of personalized treatments and therapies. Availability All the code and necessary datasets are available at https://github.com/abu-compbio/PersonaDrive . Contact cesim.erten@antalya.edu.tr or hilal.kazan@antalya.edu.tr
4
Citation1
0
Save
3

A Network-centric Framework for the Evaluation of Mutual Exclusivity Tests on Cancer Drivers

Rafsan Ahmed et al.Aug 6, 2021
ABSTRACT One of the key concepts employed in cancer driver gene identification is that of mutual exclusivity (ME); a driver mutation is less likely to occur in case of an earlier mutation that has common functionality in the same molecular pathway. Several ME tests have been proposed recently, however the current protocols to evaluate ME tests have two main limitations. Firstly the evaluations are mostly with respect to simulated data and secondly the evaluation metrics lack a network-centric view. The latter is especially crucial as the notion of common functionality can be achieved through searching for interaction patterns in relevant networks. We propose a network-centric framework to evaluate the pairwise significances found by statistical ME tests. It has three main components. The first component consists of metrics employed in the network-centric ME evaluations. Such metrics are designed so that network knowledge and the reference set of known cancer genes are incorporated in ME evaluations under a careful definition of proper control groups. The other two components are designed as further mechanisms to avoid confounders inherent in ME detection on top of the network-centric view. To this end, our second objective is to dissect the side effects caused by mutation load artifacts where mutations driving tumor subtypes with low mutation load might be incorrectly diagnosed as mutually exclusive. Finally, as part of the third main component, the confounding issue stemming from the use of nonspecific interaction networks generated as combinations of interactions from different tissues is resolved through the creation and use of tissue-specific networks in the proposed framework. The data, the source code and useful scripts are available at: https://github.com/abu-compbio/NetCentric .
0

MEXCOWalk: Mutual Exclusion and Coverage Based Random Walk to Identify Cancer Modules

Rafsan Ahmed et al.Feb 13, 2019
Motivation: Genomic analyses from large cancer cohorts have revealed the mutational heterogeneity problem which hinders the identification of driver genes based only on mutation profiles. One way to tackle this problem is to incorporate the fact that genes act together in functional modules. The connectivity knowledge present in existing protein-protein interaction networks together with mutation frequencies of genes and the mutual exclusivity of cancer mutations can be utilized to increase the accuracy of identifying cancer driver modules. Results: We present a novel edge-weighted random walk-based approach that incorporates connectivity information in the form of protein-protein interactions, mutual exclusivity, and coverage to identify cancer driver modules. MEXCOwalk outperforms several state-of-the-art computational methods on TCGA pancancer data in terms of recovering known cancer genes, providing modules that are capable of classifying normal and tumor samples, and that are enriched for mutations in specific cancer types. Furthermore, the risk scores determined with output modules can stratify patients into low-risk and high-risk groups in multiple cancer types. MEXCOwalk identifies modules containing both well-known cancer genes and putative cancer genes that are rarely mutated in the pan-cancer data. The data, the source code, and useful scripts are available at: https://github.com/abu-compbio/MEXCOwalk. Contact: hilal.kazan@antalya.edu.tr
0

Ranking Cancer Drivers via Betweenness-based Outlier Detection and Random Walks

Cesim Erten et al.Mar 5, 2020
Recent cancer genomic studies have generated detailed molecular data on a large number of cancer patients. A key remaining problem in cancer genomics is the identification of driver genes. We propose BetweenNet, a computational approach that integrates genomic data with a protein-protein interaction network to identify cancer driver genes. BetweenNet utilizes a measure based on betweenness centrality on patient specific networks to identify the so-called outlier genes that correspond to dysregulated genes for each patient. Setting up the relationship between the mutated genes and the outliers through a bipartite graph, it employs a random-walk process on the graph, which provides the final prioritization of the mutated genes. We compare BetweenNet against state-of-the art cancer gene prioritization methods on lung, breast, and pan-cancer datasets. Our evaluations show that BetweenNet is better at recovering known cancer genes based on multiple reference databases. Additionally, we show that the GO terms and the reference pathways enriched in BetweenNet ranked genes and those that are enriched in known cancer genes overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods.
Load More