A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
KK
Katrinka Kocha
Author with expertise in Zebrafish as a Model Organism for Multidisciplinary Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
3
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
10

Dual function of perivascular fibroblasts in vascular stabilization in zebrafish

Arsheen Rajan et al.Apr 27, 2020
ABSTRACT Blood vessels are vital to sustain life in all vertebrates. While it is known that mural cells (pericytes and smooth muscle cells) regulate vascular integrity, the contribution of other cell types to vascular stabilization has been largely unexplored. Using zebrafish, we identified sclerotome-derived perivascular fibroblasts as a novel population of blood vessel associated cells. In contrast to pericytes, perivascular fibroblasts emerge early during development, express the extracellular matrix (ECM) genes col1a2 and col5a1 , and display distinct morphology and distribution. Time-lapse imaging reveals that perivascular fibroblasts serve as pericyte precursors. Genetic ablation of perivascular fibroblasts results in dysmorphic blood vessels with variable diameters. Strikingly, col5a1 mutants show spontaneous hemorrhage, and the penetrance of the phenotype is strongly enhanced by the additional loss of col1a2 . Together, our work reveals dual roles of perivascular fibroblasts in vascular stabilization where they establish the ECM around nascent vessels and function as pericyte progenitors. AUTHOR SUMMARY Blood vessels are essential to sustain life in humans. Defects in blood vessels can lead to serious diseases, such as hemorrhage, tissue ischemia, and stroke. However, how blood vessel stability is maintained by surrounding support cells is still poorly understood. Using the zebrafish model, we identify a new population of blood vessel associated cells termed perivascular fibroblasts, which originate from the sclerotome, an embryonic structure that is previously known to generate the skeleton of the animal. Perivascular fibroblasts are distinct from pericytes, a known population of blood vessel support cells. They become associated with blood vessels much earlier than pericytes and express several collagen genes, encoding main components of the extracellular matrix. Loss of perivascular fibroblasts or mutations in collagen genes result in fragile blood vessels prone to damage. Using cell tracing in live animals, we find that a subset of perivascular fibroblasts can differentiate into pericytes. Together, our work shows that perivascular fibroblasts play two important roles in maintaining blood vessel integrity. Perivascular fibroblasts secrete collagens to stabilize newly formed blood vessels and a sub-population of these cells also functions as precursors to generate pericytes to provide additional vascular support.
10
Citation3
0
Save
0

Single cell dynamics of embryonic muscle progenitor cells in zebrafish

Priyanka Sharma et al.Aug 21, 2018
Muscle stem cells hold a great therapeutic potential in regenerating damaged muscles. However, the in vivo behavior of muscle stem cells during muscle growth and regeneration is still poorly understood. Using zebrafish as a model, we describe the in vivo dynamics and function of dermomyotome cells, a population of embryonic muscle progenitor cells. Dermomyotome cells are located in a superficial layer external to muscle fibers and express many extracellular matrix (ECM) genes including col1a2. Utilizing a new col1a2 transgenic line, we show that dermomyotome cells display a ramified morphology with dynamic cellular processes. Cell lineage tracing demonstrates that col1a2+ dermomyotome cells contribute to normal muscle growth as well as muscle injury repair. Combination of live imaging and single cell clonal analysis reveals a highly-choreographed process of muscle regeneration. Activated dermomyotome cells change from the quiescent ramified morphology to a polarized and elongated morphology and generate daughter cells that fuse with existing muscle fibers. Ablation of the dermomyotome severely compromises muscle injury repair. Our work provides a dynamic view of embryonic muscle progenitor cells during zebrafish muscle regeneration.
1

Temporal cell fate determination in the spinal cord is mediated by the duration of Notch signalling

Craig Jacobs et al.Oct 26, 2021
ABSTRACT During neural development, progenitor cells generate different types of neurons in specific time windows. Despite the characterisation of many of the transcription factor networks involved in these differentiation events, the mechanism behind their temporal regulation is poorly understood. To address this question, we studied the temporal differentiation of the simple lateral floor plate (LFP) domain in the zebrafish spinal cord. LFP progenitors sequentially generate early-born Kolmer-Agduhr” (KA”) interneurons and late-born V3 interneurons. Analysis using a Notch signalling reporter demonstrates that these cell populations have distinct Notch signalling profiles. Not only do V3 cells receive higher total levels of Notch response, but they collect this response over a longer duration compared to V3 cells. To test whether the duration of Notch signalling determines the temporal cell fate specification, we combined a transgene that constitutively activates Notch signalling in the ventral spinal cord with a heat shock inducible Notch signalling terminator to switch off Notch response at any given time. Sustained Notch signalling results in expanded LFP progenitors while KA” and V3 interneurons fail to specify. Early termination of Notch signalling leads to exclusively KA” cell fate, despite the high level of Notch signalling, whereas late attenuation of Notch signalling drives only V3 cell fate. This suggests that the duration of Notch signalling is instructive in cell fate specification. Interestingly, knockdown experiments reveal a role for the Notch ligand Jag2b in maintaining LFP progenitors and limiting their differentiation into KA” and V3 cells. Our results indicate that Notch signalling is required for neural progenitor maintenance while a specific attenuation timetable defines the fate of the postmitotic progeny.
10

Origin and diversification of fibroblasts from the sclerotome in zebrafish

Christine Roger et al.Apr 19, 2021
ABSTRACT Fibroblasts play an important role in maintaining tissue integrity by secreting components of the extracellular matrix and initiating response to injury. Although the function of fibroblasts has been extensively studied in adults, the embryonic origin and diversification of different fibroblast subtypes during development remain largely unexplored. Using zebrafish as a model, we show that the sclerotome, a sub-compartment of the somite, is the embryonic source of multiple fibroblast subtypes including tenocytes (tendon fibroblasts), blood vessel associated fibroblasts, fin mesenchymal cells, and interstitial fibroblasts. High-resolution imaging shows that different fibroblast subtypes occupy unique anatomical locations with distinct morphologies. Long-term Cre-mediated lineage tracing reveals that the sclerotome also contributes to cells closely associated with the axial skeleton. Ablation of sclerotome progenitors results in extensive skeletal defects. Using photoconversion-based cell lineage analysis, we find that sclerotome progenitors at different dorsal-ventral and anterior-posterior positions display distinct differentiation potentials. Single-cell clonal analysis combined with in vivo imaging suggests that the sclerotome mostly contains unipotent and bipotent progenitors prior to cell migration, and the fate of their daughter cells is biased by their migration paths and relative positions. Together, our work demonstrates that the sclerotome is the embryonic source of trunk fibroblasts as well as the axial skeleton, and local signals likely contribute to the diversification of distinct fibroblast subtypes.
10
0
Save
0

The sclerotome is the source of the dorsal and anal fin skeleton and its expansion is required for median fin development

Raisa Bailon‐Zambrano et al.Nov 22, 2024
Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback(smb), fails to develop a dorsal fin. Moreover, the anal fin is reduced along the antero-posterior axis, and spine defects develop. Mechanistically, smb is caused by an insertion of a sox10:Gal4VP16transgenic construct into a non-coding region. The first step in fin, and limb, induction is aggregation of undifferentiated mesenchyme at the appendage development site. In smb, this dorsal fin mesenchyme is absent. Lineage tracing demonstrates the previously unknown developmental origin of the mesenchyme, the sclerotome, which also gives rise to the spine. Strikingly, we find that there is significantly less sclerotome in smb compared to wild type. Our results give insight into the origin and modularity of understudied median fins, which have changed position, number, size, and even disappeared across evolutionary time.