CC
Christina Camell
Author with expertise in Inflammation and Obesity-Related Metabolic Disorders
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
369
h-index:
12
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing

Christina Camell et al.Sep 26, 2017
+10
O
J
C
Lipolysis declines with age because NLRP3 inflammasome-activated adipose tissue macrophages reduce levels of noradrenaline by upregulating genes that control its degradation, such as GDF3 and MAOA. With increasing age, lipolysis (the breakdown of fats in the body) induced by catecholamines declines and fewer free fatty acids are mobilized. This is associated with increased fat around the abdomen, a lower exercise capacity, and a reduced ability to maintain core body temperature and to survive starvation. Vishwa Deep Dixit and colleagues now show that lipolysis declines because fatty tissue macrophages activated by NLRP3 inflammasome reduce the levels of catecholamine by upregulating genes that control its degradation, such as growth differentiation factor-3 (GDF3) and monoamine oxidase A (MAOA). Deletion of NLRP3 or GDF3, or inhibition of MAOA restores lipolysis to more youthful levels. Catecholamine-induced lipolysis, the first step in the generation of energy substrates by the hydrolysis of triglycerides1, declines with age2,3. The defect in the mobilization of free fatty acids in the elderly is accompanied by increased visceral adiposity, lower exercise capacity, failure to maintain core body temperature during cold stress, and reduced ability to survive starvation. Although catecholamine signalling in adipocytes is normal in the elderly, how lipolysis is impaired in ageing remains unknown2,4. Here we show that adipose tissue macrophages regulate the age-related reduction in adipocyte lipolysis in mice by lowering the bioavailability of noradrenaline. Unexpectedly, unbiased whole-transcriptome analyses of adipose macrophages revealed that ageing upregulates genes that control catecholamine degradation in an NLRP3 inflammasome-dependent manner. Deletion of NLRP3 in ageing restored catecholamine-induced lipolysis by downregulating growth differentiation factor-3 (GDF3) and monoamine oxidase A (MAOA) that is known to degrade noradrenaline. Consistent with this, deletion of GDF3 in inflammasome-activated macrophages improved lipolysis by decreasing levels of MAOA and caspase-1. Furthermore, inhibition of MAOA reversed the age-related reduction in noradrenaline concentration in adipose tissue, and restored lipolysis with increased levels of the key lipolytic enzymes adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Our study reveals that targeting neuro-immunometabolic signalling between the sympathetic nervous system and macrophages may offer new approaches to mitigate chronic inflammation-induced metabolic impairment and functional decline.
50

Epigenetic aging of classical monocytes from healthy individuals

Irina Shchukina et al.May 11, 2020
+25
O
J
I
ABSTRACT The impact of healthy aging on molecular programming of immune cells is poorly understood. Here, we report comprehensive characterization of healthy aging in human classical monocytes, with a focus on epigenomic, transcriptomic, and proteomic alterations, as well as the corresponding proteomic and metabolomic data for plasma, using healthy cohorts of 20 young and 20 older individuals (~27 and ~64 years old on average). For each individual, we performed eRRBS-based DNA methylation profiling, which allowed us to identify a set of age-associated differentially methylated regions (DMRs) – a novel, cell-type specific signature of aging in DNA methylome. Optimized ultra-low-input ChIP-seq (ULI-ChIP-seq) data acquisition and analysis pipelines applied to 5 chromatin marks for each individual revealed lack of large-scale age-associated changes in chromatin modifications and allowed us to link hypo- and hypermethylated DMRs to distinct chromatin modification patterns. Specifically, hypermethylation events were associated with H3K27me3 in the CpG islands near promoters of lowly-expressed genes, while hypomethylated DMRs were enriched in H3K4me1 marked regions and associated with normal pattern of expression. Furthermore, hypo- and hypermethylated DMRs followed distinct functional and genetic association patterns. Hypomethylation events were associated with age-related increase of expression of the corresponding genes, providing a link between DNA methylation and age-associated transcriptional changes in primary human cells. Furthermore, these locations were also enriched in genetic regions associated by GWAS with asthma, total blood protein, hemoglobin levels and MS. On the other side, acceleration of epigenetic age in HIV and asthma stems only from changes in hypermethylated DMRs but not from hypomethylated loci.
50
Citation3
0
Save
0

Aging induces Nlrp3 inflammasome dependent adipose B cell expansion to impair metabolic homeostasis

Christina Camell et al.Apr 13, 2019
+9
P
A
C
Summary Visceral adiposity in elderly is associated with alterations in adipose tissue immune cells leading to inflammation and metabolic dysfunction. The Nlrp3 inflammasome is a critical regulator of macrophage activation, inflammation, and immunometabolism in visceral adipose tissue during aging; however, the potential contribution of adipose tissue B cells is unexplored. Here, we show that aging expands adipose-resident B cells and fat-associated lymphoid clusters (FALCs) in visceral white adipose tissue. Adipose tissue B cells exhibit a memory-like B cell profile similar to the phenotype of aged B cells that are increased in spleen of old mice. Mechanistically, the age-induced FALC formation and adipose B cell expansion, but not B cell transcriptional program, is dependent on the Nlrp3 inflammasome. Furthermore, B cell depletion in aged mice restores lipolysis and defense against loss of core body temperature during cold stress. These data reveal that inhibiting Nlrp3-dependent B cell accumulation can be targeted to reverse metabolic impairment in aging adipose tissue. Highlights - Adipose-resident aged B cells are increased in fat-associated lymphoid clusters (FALC) - FALC formation and adipose-resident B cell expansion during aging are regulated by the Nlrp3 inflammasome - Nlrp3 and B cell depletion in aging restores lipolysis and improves cold tolerancea
0
Citation2
0
Save
0

Dysregulation of adipose ILC2 underlies thermogenic failure in aging

Emily Goldberg et al.Sep 8, 2020
+4
Y
I
E
Abstract Aging impairs the integrated immunometabolic responses which have evolved to maintain core body temperature in homeotherms to survive cold-stress, infections, and dietary restriction. Adipose tissue inflammation regulates the thermogenic stress response but how adipose tissue-resident cells instigate thermogenic failure in aged are unknown. Here, we define alterations in the adipose-resident immune system and identify that type 2 innate lymphoid cells (ILC2) are lost in aging. Restoration of ILC2 numbers in aged mice to levels seen in adults through IL-33 supplementation failed to rescue old mice from metabolic impairment and cold-induced lethality. Transcriptomic analyses revealed intrinsic defects in aged ILC2, and adoptive transfer of adult ILC2 are sufficient to protect old mice against cold. Thus, the functional defects in adipose ILC2 during aging drive thermogenic failure. One Sentence Summary Age-related changes in adipose tissue drive reprogramming of ILC2 that leads to impaired cold tolerance
0
Citation2
0
Save
0

Protocol to examine murine visceral adipose tissue immune cells using fluorescence-based flow cytometry

Anna Carey et al.Aug 10, 2024
C
A
Adipose tissue immune cells are heterogeneous and dynamic, alter metabolism, and drive immune responses. Here, we present a protocol for assessment and characterization of murine adipose tissue immune cells using fluorescence-based flow cytometry and sorting into pure populations. We describe steps for isolation of the stromovascular fraction, antibody staining, and data collection by flow cytometry. We also discuss common issues and troubleshooting steps. For complete details on the use and execution of this protocol, please refer to Carey et al.
0
Citation1
0
Save
4

Nerve-associated macrophages control adipose homeostasis across lifespan and restrain age-related inflammation

Elsie Gonzalez-Hurtado et al.Oct 13, 2024
+13
K
C
E
Abstract Age-related inflammation or ‘inflammaging’ is a key mechanism that increases disease burden and may control lifespan. How adipose tissue macrophages (ATMs) control inflammaging is not well understood in part because the molecular identities of niche-specific ATMs are incompletely known. Using intravascular labeling to exclude circulating myeloid cells and subsequent single-cell sequencing with orthogonal validation, we define the diversity and alterations in niche resident ATMs through lifespan. Aging led to depletion of vessel-associated macrophages (VAMs), expansion of lipid-associated macrophages (LAMs), and emergence of a unique subset of CD38 + age-associated macrophages (AAMs) in visceral white adipose tissue (VAT). Interestingly, CD169 + CD11c − ATMs are enriched in a subpopulation of nerve-associated macrophages (NAMs) that declines with age. Depletion of CD169 + NAMs in aged mice increases inflammaging and impairs lipolysis suggesting that they are necessary for preventing catecholamine resistance in VAT. These findings reveal specialized ATMs control adipose homeostasis and link inflammation to tissue dysfunction during aging.
4
Paper
590 RSC
590 RSC
$0.00
0
Save
0

Divergent Immediate and Delayed Effects of Juvenile Exposure to Doxorubicin on the Thymus in C57BL/6 Mice

Benu George et al.Aug 22, 2024
+6
M
K
B
Background: The understanding of alterations within the immune system following doxorubicin (DOX) chemotherapy, and subsequent restoration, in childhood cancer survivors remains limited. This investigation endeavors to elucidate the immediate and delayed changes in thymic immune cell populations and their phenotypes in response to clinically relevant low doses of DOX in a juvenile mouse model. Methods: Male mice underwent a regimen of repeated low-dose DOX intraperitoneal injections at 4 mg/kg/week for three consecutive weeks. One week after the last dose of DOX, a subset of mice was euthanized to assess the immediate effects of DOX administration. A second subset of mice was euthanized five weeks after the last DOX dose to evaluate the delayed effects. Thymic samples were collected for multiparameter flow cytometry analysis to evaluate alterations in immune cell composition and phenotype. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure gene expression of- cytokines and senescence markers. Results: One week following DOX administration, DOX treatment resulted in significant decline in thymus weight, with notable alterations in immune cell subpopulations. Reduced frequencies of mature CD3+CD4+ and CD3+CD8+ T cells were observed, along with changes in proliferation and exhaustion markers. Gene expression analysis revealed upregulation of Foxn, Pax1, Ifnγ, and Il7 alongside decreased Il6 and Il17 expression. Furthermore, Cdkn1a (p21Cip1) expression was elevated, suggesting immunosenescence. Five weeks following DOX administration, delayed effects of DOX treatment manifested in rebound increase in thymus weight and altered frequencies of CD4+ and CD8+ T cell subsets, with distinct patterns of proliferation and exhaustion observed. Notably, central memory CD4+ T cells exhibited significant decrease in frequency, while naive and effector memory CD4+ T cells showed reduced proliferation (Ki67+) and PD1 expression. Similar trends were observed in CD8+ T cell subsets, indicating selective effects of DOX on T cell differentiation and function. Although expression of thymus-related genes was normalized, p21Cip1 gene expression remained elevated. Conclusion: DOX treatment elicits a multifaceted influence on immune cell subsets and thymic weight. Immediate effects included thymic atrophy and reductions in mature T cell populations, while delayed effects showed rebound thymic hyperplasia and selective changes in CD4+ and CD8+ T cell subsets. Notably, both central memory and effector memory T cells exhibited reduced proliferation and exhaustion, suggesting unique impacts of DOX on immune cell function. The enduring elevation in p21Cip1 gene expression 5 weeks after DOX treatment suggests an immunosenescent phenotype. These observations collectively illuminate the formidable task of preserving immune competence and overall well-being in childhood cancer survivors subjected to DOX therapy.