JC
Joseph Christie‐Oleza
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
1,721
h-index:
29
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Distribution of plastic polymer types in the marine environment; A meta-analysis

Gabriel Erni-Cassola et al.Feb 22, 2019
Despite growing plastic discharge into the environment, researchers have struggled to detect expected increases of marine plastic debris in sea surfaces, sparking discussions about “missing plastics” and final sinks, which are hypothesized to be coastal and deep-sea sediments. While it holds true that the highest concentrations of plastic particles are found in these locations (103-104 particles m−3 in sediments vs. 0.1–1 particles m−3 in the water column), our meta-analysis also highlights that in open oceans, microplastic polymer types segregated in the water column according to their density. Lower density polymers, such as polypropylene and polyethylene, dominated sea surface samples (25% and 42%, respectively) but decreased in abundance through the water column (3% and 2% in the deep-sea, respectively), whereas only denser polymers (i.e. polyesters and acrylics) were enriched with depth (5% in surface seawater vs. 77% in deep-sea locations). Our meta-analysis demonstrates that some of the most abundant and recalcitrant manufactured plastics are more persistent in the sea surface than previously anticipated and that further research is required to determine the ultimate fate of these polymers as current knowledge does not support the deep sea as the final sink for all polymer types.
0
Paper
Citation633
0
Save
0

Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples

Gabriel Erni-Cassola et al.Nov 7, 2017
Marine plastic debris is a global environmental problem. Surveys have shown that <5 mm plastic particles, known as microplastics, are significantly more abundant in surface seawater and on shorelines than larger plastic particles are. Nevertheless, quantification of microplastics in the environment is hampered by a lack of adequate high-throughput methods for distinguishing and quantifying smaller size fractions (<1 mm), and this has probably resulted in an underestimation of actual microplastic concentrations. Here we present a protocol that allows high-throughput detection and automated quantification of small microplastic particles (20-1000 μm) using the dye Nile red, fluorescence microscopy, and image analysis software. This protocol has proven to be highly effective in the quantification of small polyethylene, polypropylene, polystyrene, and nylon-6 particles, which frequently occur in the water column. Our preliminary results from sea surface tows show a power-law increase in small microplastics (i.e., <1 mm) with a decreasing particle size. Hence, our data help to resolve speculation about the "apparent" loss of this fraction from surface waters. We consider that this method presents a step change in the ability to detect small microplastics by substituting the subjectivity of human visual sorting with a sensitive and semiautomated procedure.
0
Paper
Citation593
0
Save
0

Understanding microbial community dynamics to improve optimal microbiome selection

Robyn Wright et al.Jun 3, 2019
Artificial selection of microbial communities that perform better at a desired process has seduced scientists for over a decade, but the method has not been systematically optimised nor the mechanisms behind its success, or failure, determined. Microbial communities are highly dynamic and, hence, go through distinct and rapid stages of community succession, but the consequent effect this may have on artificially selected communities is unknown. Using chitin as a case study, we successfully selected for microbial communities with enhanced chitinase activities but found that continuous optimisation of incubation times between selective transfers was of utmost importance. The analysis of the community composition over the entire selection process revealed fundamental aspects in microbial ecology: when incubation times between transfers were optimal, the system was dominated by Gammaproteobacteria (i.e. main bearers of chitinase enzymes and drivers of chitin degradation), before being succeeded by cheating, cross-feeding and grazing organisms. The selection of microbiomes to enhance a desired process is widely used, though the success of artificially selecting microbial communities appears to require optimal incubation times in order to avoid the loss of the desired trait as a consequence of an inevitable community succession. A comprehensive understanding of microbial community dynamics will improve the success of future community selection studies.
0
Citation280
0
Save
1

A novel Ca2+ signalling pathway co-ordinates environmental phosphorus sensing and nitrogen metabolism in marine diatoms

Katherine Helliwell et al.May 14, 2020
Abstract Diatoms are a diverse and globally important phytoplankton group, responsible for an estimated 20% of carbon fixation on Earth. They frequently form spatially extensive phytoplankton blooms, responding rapidly to increased availability of nutrients including phosphorus and nitrogen. Although it is well established that diatoms are common first-responders to nutrient influxes in aquatic ecosystems, little is known of the sensory mechanisms that they employ for nutrient perception. Here we show that diatoms use a novel and highly-sensitive Ca 2+ -dependent signalling pathway, not previously described in eukaryotes, to sense and respond to the critical macronutrient phosphorus. We demonstrate that phosphorus-Ca 2+ signalling is essential for regulating diatom recovery from phosphorus limitation, by controlling rapid and substantial increases in nitrogen assimilation. Phosphorus-Ca 2+ signalling thus mediates fundamental cross-talk between the vital nutrients P and N to maximise resource competition, and likely governs the success of diatoms as major bloom formers in regions of pulsed nutrient supply. Importantly, our study demonstrates that distinct mechanisms for nutrient sensing have evolved in photosynthetic eukaryotes.
1
Paper
Citation3
0
Save
0

Phytoplankton trigger the production of cryptic metabolites in the marine actinobacteria Salinispora tropica

Audam Chhun et al.May 20, 2020
Abstract Bacteria from the Actinomycete family are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacteria Salinispora tropica , for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide A but half of its putative BGCs are still orphan. Although previous studies have looked into using marine heterotrophs to induce orphan BGCs in Salinispora , the potential impact of co-culturing marine phototrophs with Salinispora has yet to be investigated. Following the observation of clear antimicrobial phenotype of the actinobacterium on a range of phytoplanktonic organisms, we here report the discovery of novel cryptic secondary metabolites produced by S. tropica in response to its co-culture with photosynthetic primary producers. An approach combining metabolomics and proteomics revealed that the photosynthate released by phytoplankton influences the biosynthetic capacities of S. tropica with both production of new molecules and the activation of orphan BGCs. Our work pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from actinobacteria. Importance The alarming increase of antimicrobial resistance has generated an enormous interest in the discovery of novel active compounds. The isolation of new microbes to untap novel natural products is currently hampered because most biosynthetic gene clusters (BGC) encoded by these microorganisms are not expressed under standard laboratory conditions, i.e. mono-cultures. Here we show that co-culturing can be an easy way for triggering silent BGC. By combining state-of-the-art metabolomics and high-throughput proteomics, we characterized the activation of cryptic metabolites and silent biosynthetic gene clusters in the marine actinobacteria Salinispora tropica by the presence of phytoplankton photosynthate. We further suggest a mechanistic understanding of the antimicrobial effect this actinobacterium has on a broad range of prokaryotic and eukaryotic phytoplankton species and reveal a promising candidate for antibiotic production.
0
Citation1
0
Save
0

Artificial selection of microbial communities to enhance degradation of recalcitrant polymers

Robyn Wright et al.Nov 20, 2018
Recalcitrant polymers are widely distributed in the environment. This includes natural polymers, such as chitin, but synthetic polymers are becoming increasingly abundant, for which biodegradation is uncertain. Distribution of labour in microbial communities commonly evolves in nature, particularly for arduous processes, suggesting a community may be better at degrading recalcitrant compounds than individual microorganisms. Artificial selection of microbial communities with better degradation potential has seduced scientists for over a decade, but the method has not been systematically optimised nor applied to polymer degradation. Using chitin as a case study, we successfully selected for microbial communities with enhanced chitinase activities but found that continuous optimisation of incubation times between selective generations was of utmost importance. The analysis of the community composition over the entire selection process revealed fundamental aspects in microbial ecology: when incubation times between generations were optimal, the system was dominated by Gammaproteobacteria, main bearers of chitinase enzymes and drivers of chitin degradation, before being succeeded by cheating, cross-feeding and grazing organisms.
8

Cell size matters: nano- and micro-plastics preferentially drive declines of large marine phytoplankton due to co-aggregation

Craig Dedman et al.Sep 1, 2021
Abstract Marine plastic pollution represents a key environmental concern. Whilst ecotoxicological data for plastic is increasingly available, its impact upon marine phytoplankton remains unclear. Owing to their predicted abundance in the marine environment and likely interactions with phytoplankton, here we focus on the smaller fraction of plastic particles (∼50 nm and ∼2 µm polystyrene spheres). Exposure of natural phytoplankton communities and laboratory cultures revealed that plastic exposure does not follow traditional trends in ecotoxicological research, since large phytoplankton appear particularly susceptible towards plastics exposure despite their higher surface-to-volume ratios. Cell declines appear driven by hetero-aggregation and co-sedimentation of cells with plastic particles, recorded visually and demonstrated using confocal microscopy. As a consequence, plastic exposure also caused disruption to photosynthetic functioning, as determined by both photosynthetic efficiency and high throughput proteomics. Negative effects upon phytoplankton are recorded at concentrations orders of magnitude above those estimated in the environment. Hence, it is likely that impacts of NPs and MPs are exacerbated at the high concentrations typically used in ecotoxicological research ( i . e ., mg L -1 ).
1

A highly active phosphate-insensitive phosphatase is widely distributed in nature

Ian Lidbury et al.Aug 27, 2021
Abstract The regeneration of bioavailable phosphate from immobilised organophosphorus represents a key process in the global phosphorus cycle and is facilitated by enzymes known as phosphatases. Most bacteria possess at least one of three major phosphatases, known as PhoA, PhoX and PhoD, whose activity is optimal under alkaline conditions. The production and activity of these three phosphatase families is negatively regulated by phosphate availability and thus these enzymes play a major role in scavenging phosphorus only during times of phosphate scarcity. Here, we reveal a previously overlooked phosphate-insensitive phosphatase, PafA, prevalent in Bacteroidetes , which is highly abundant in nature and represents a major route for the remineralisation of phosphate in the environment. Using Flavobacterium johnsoniae as the model, we reveal PafA is highly active towards phosphomonoesters. Unlike other major phosphatases, PafA is fully functional in the presence of its metabolic product, phosphate, and is essential for growth on phosphorylated carbohydrates as a sole carbon source. PafA, which is constitutively produced under all growth conditions tested, rapidly remineralises phosphomonoesters producing significant quantities of bioavailable phosphate that can cross feed into neighbouring cells. pafA is both abundant and highly expressed in the global ocean and abundant in plant rhizospheres, highlighting a new and important enzyme in the global phosphorus cycle with applied implications for agriculture as well as biogeochemical cycling. We speculate PafA expands the metabolic niche of Bacteroidetes by enabling utilisation of abundant organophosphorus substrates in the presence of excess phosphate, when other microbes are rendered incapable. Significance statement Phosphorus is an essential element for all life on Earth. Global primary production, and thus the ability for oceans and soils to drawdown atmospheric carbon dioxide, is in part controlled by the availability of inorganic phosphate. Likewise, global food production is also reliant on adequate supplies of phosphorus to both plants and animals. A major fraction of the total phosphorus pool exists as organic phosphorus, which requires mineralisation to phosphate prior to incorporation into cellular biomolecules. This important process is performed by enzymes known as phosphatases. Here, we reveal that the unique bacterial phosphatase, PafA, is a key player in the global phosphorus cycle and presents a major route for the regeneration of bioavailable phosphate required for both primary and secondary production.
Load More