RS
Rajiv Sharma
Author with expertise in Gene Therapy Techniques and Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
3,669
h-index:
40
/
i10-index:
93
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Decrease in Reelin and Glutamic Acid Decarboxylase67 (GAD67) Expression in Schizophrenia and Bipolar Disorder

A Guidotti et al.Nov 1, 2000

Background

 Reelin (RELN) is a glycoprotein secreted preferentially by cortical γ-aminobutyric acid-ergic (GABAergic) interneurons (layers I and II) that binds to integrin receptors located on dendritic spines of pyramidal neurons or on GABAergic interneurons of layers III through V expressing the disabled-1 gene product (DAB1), a cytosolic adaptor protein that mediates RELN action. To replicate earlier findings that RELN and glutamic acid decarboxylase (GAD)67, but not DAB1 expression, are down-regulated in schizophrenic brains, and to verify whether other psychiatric disorders express similar deficits, we analyzed, blind, an entirely new cohort of 60 postmortem brains, including equal numbers of patients matched for schizophrenia, unipolar depression, and bipolar disorder with nonpsychiatric subjects. 

Methods

 Reelin, GAD65, GAD67, DAB1, and neuron-specific–enolase messenger RNAs (mRNAs) and respective proteins were measured with quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) or Western blot analyses. Reelin-positive neurons were identified by immunohistochemistry using a monoclonal antibody. 

Results

 Prefrontal cortex and cerebellar expression of RELN mRNA, GAD67protein and mRNA, and prefrontal cortex RELN-positive cells was significantly decreased by 30% to 50% in patients with schizophrenia or bipolar disorder with psychosis, but not in those with unipolar depression without psychosis when compared with nonpsychiatric subjects. Group differences were absent for DAB1,GAD65and neuron-specific–enolase expression implying that RELN and GAD67down-regulations were unrelated to neuronal damage. Reelin and GAD67were also unrelated to postmortem intervals, dose, duration, or presence of antipsychotic medication. 

Conclusions

 The selective down-regulation of RELN and GAD67in prefrontal cortex of patients with schizophrenia and bipolar disorder who have psychosis is consistent with the hypothesis that these parameters are vulnerability factors in psychosis; this plus the loss of the correlation between these 2 parameters that exists in nonpsychotic subjects support the hypothesis that these changes may be liability factors underlying psychosis.
0

A decrease of reelin expression as a putative vulnerability factor in schizophrenia

Francesco Impagnatiello et al.Dec 22, 1998
Postmortem prefrontal cortices (PFC) (Brodmann’s areas 10 and 46), temporal cortices (Brodmann’s area 22), hippocampi, caudate nuclei, and cerebella of schizophrenia patients and their matched nonpsychiatric subjects were compared for reelin ( RELN ) mRNA and reelin (RELN) protein content. In all of the brain areas studied, RELN and its mRNA were significantly reduced (≈50%) in patients with schizophrenia; this decrease was similar in patients affected by undifferentiated or paranoid schizophrenia. To exclude possible artifacts caused by postmortem mRNA degradation, we measured the mRNAs in the same PFC extracts from γ-aminobutyric acid (GABA) A receptors α 1 and α 5 and nicotinic acetylcholine receptor α 7 subunits. Whereas the expression of the α 7 nicotinic acetylcholine receptor subunit was normal, that of the α 1 and α 5 receptor subunits of GABA A was increased when schizophrenia was present. RELN mRNA was preferentially expressed in GABAergic interneurons of PFC, temporal cortex, hippocampus, and glutamatergic granule cells of cerebellum. A protein putatively functioning as an intracellular target for the signal-transduction cascade triggered by RELN protein released into the extracellular matrix is termed mouse disabled-1 (DAB1) and is expressed at comparable levels in the neuroplasm of the PFC and hippocampal pyramidal neurons, cerebellar Purkinje neurons of schizophrenia patients, and nonpsychiatric subjects; these three types of neurons do not express RELN protein. In the same samples of temporal cortex, we found a decrease in RELN protein of ≈50% but no changes in DAB1 protein expression. We also observed a large (up to 70%) decrease of GAD67 but only a small decrease of GAD65 protein content. These findings are interpreted within a neurodevelopmental/vulnerability “two-hit” model for the etiology of schizophrenia.
0

Reelin promoter hypermethylation in schizophrenia

Dennis Grayson et al.Jun 16, 2005
Reelin mRNA and protein levels are reduced by ≈50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and 139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status.
0
Citation547
0
Save
0

In vivo genome editing restores haemostasis in a mouse model of haemophilia

Hojun Li et al.Jun 24, 2011
Direct editing of disease-causing mutations has obvious attractions for the treatment of genetic disorders if the many practical obstacles to the technique can be overcome. One promising line of research centres on the development of zinc finger nucleases (ZFNs) produced by fusing an engineered zinc finger DNA-binding domain to an endonuclease. These artificial enzymes induce efficient gene correction in cultured cells. Li et al. now report that zinc finger nucleases induce double-strand breaks in specifically selected locations on the genome and stimulate genome editing at a clinically meaningful level in vivo. In a proof-of-principle experiment, ZFNs delivered to the liver in a mouse model of haemophilia B achieved a level of gene replacement that was sufficient to correct the clotting defect, and the effect persisted following liver regeneration. Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation1. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus2,3,4, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.
0
Citation530
0
Save
0

An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability

Lucio Tremolizzo et al.Dec 12, 2002
Reelin and glutamic acid decarboxylase (GAD) 67 expressed by cortical γ-aminobutyric acid-ergic interneurons are down-regulated in schizophrenia. Because epidemiological studies of schizophrenia fail to support candidate gene haploinsufficiency of Mendelian origin, we hypothesize that epigenetic mechanisms (i.e., cytosine hypermethylation of CpG islands present in the promoter of these genes) may be responsible for this down-regulation. Protracted l -methionine (6.6 mmol/kg for 15 days, twice a day) treatment in mice elicited in brain an increase of S -adenosyl-homocysteine, the processing product of the methyl donor S -adenosyl-methionine, and a marked decrease of reelin and GAD 67 mRNAs in both WT and heterozygous reeler mice. This effect of l -methionine was associated with an increase in the number of methylated cytosines in the CpG island of the reelin promoter region. This effect was not observed for GAD 65 or neuronal-specific enolase and was not replicated by glycine doses 2-fold greater than those of l -methionine. Prepulse inhibition of startle declined at a faster rate as the prepulse/startle interval increased in mice receiving l -methionine. Valproic acid (2 mmol/kg for 15 days, twice a day) reverted l -methionine-induced down-regulation of reelin and GAD 67 in both WT and heterozygous reeler mice, suggesting an epigenetic action through the inhibition of histone deacetylases. The same dose of valproate increased acetylation of histone H3 in mouse brain nearly 4-fold. This epigenetic mouse model may be useful in evaluating drug efficacy on schizophrenia vulnerability. Hence the inhibition of histone deacetylases could represent a pharmacological intervention mitigating epigenetically induced vulnerability to schizophrenia in individuals at risk.
0
Citation376
0
Save
10

TRACE-Seq Reveals Clonal Reconstitution Dynamics of Gene Targeted Human Hematopoietic Stem Cells

Rajiv Sharma et al.May 28, 2020
Abstract Targeted DNA correction of disease-causing mutations in hematopoietic stem and progenitor cells (HSPCs) may usher in a new class of medicines to treat genetic diseases of the blood and immune system. With state-of-the-art methodologies, it is now possible to correct disease-causing mutations at high frequencies in HSPCs by combining ribonucleoprotein (RNP) delivery of Cas9 and chemically modified sgRNAs with homologous DNA donors via recombinant adeno-associated viral vector serotype six (AAV6). However, because of the precise nucleotide-resolution nature of gene correction, these current approaches do not allow for clonal tracking of gene targeted HSPCs. Here, we describe T racking R ecombination A lleles in C lonal E ngraftment using seq uencing (TRACE-Seq), a novel methodology that utilizes barcoded AAV6 donor template libraries, carrying either in-frame silent mutations or semi-randomized nucleotide sequences outside the coding region, to track the in vivo lineage contribution of gene targeted HSPC clones. By targeting the HBB gene with an AAV6 donor template library consisting of ∼20,000 possible unique exon 1 in-frame silent mutations, we track the hematopoietic reconstitution of HBB targeted myeloid-skewed, lymphoid-skewed, and balanced multi-lineage repopulating human HSPC clones in immunodeficient mice. We anticipate that this methodology has the potential to be used for HSPC clonal tracking of Cas9 RNP and AAV6-mediated gene targeting outcomes in translational and basic research settings.
10
Citation3
0
Save