EO
Erin O‘Shea
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
26
(38% Open Access)
Cited by:
19,499
h-index:
70
/
i10-index:
101
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quantification of protein half-lives in the budding yeast proteome

Archana Belle et al.Aug 18, 2006
A complete description of protein metabolism requires knowledge of the rates of protein production and destruction within cells. Using an epitope-tagged strain collection, we measured the half-life of >3,750 proteins in the yeast proteome after inhibition of translation. By integrating our data with previous measurements of protein and mRNA abundance and translation rate, we provide evidence that many proteins partition into one of two regimes for protein metabolism: one optimized for efficient production or a second optimized for regulatory efficiency. Incorporation of protein half-life information into a simple quantitative model for protein production improves our ability to predict steady-state protein abundance values. Analysis of a simple dynamic protein production model reveals a remarkable correlation between transcriptional regulation and protein half-life within some groups of coregulated genes, suggesting that cells coordinate these two processes to achieve uniform effects on protein abundances. Our experimental data and theoretical analysis underscore the importance of an integrative approach to the complex interplay between protein degradation, transcriptional regulation, and other determinants of protein metabolism.
0

Peptide ‘Velcro’: Design of a heterodimeric coiled coil

Erin O‘Shea et al.Oct 1, 1993
The leucine zipper is a protein structural motif involved in the dimerization of a number of transcription factors. We have previously shown that peptides corresponding to the leucine-zipper region of the Fos and Jun oncoproteins preferentially form heterodimeric coiled coils, and that simple principles involving electrostatic interactions are likely to determine the pairing specificity of coiled coils. A critical test of these principles is to use them as guidelines to design peptides with desired properties.Based on studies of the Fos, Jun and GCN4 leucine zippers, we have designed two peptides that are predominantly unfolded in isolation but which, when mixed, associate preferentially to form a stable, parallel, coiled-coil heterodimer. To favor heterodimer formation, we chose peptide sequences that would be predicted to give destabilizing electrostatic interactions in the homodimers that would be relieved in the heterodimer. The peptides have at least a 10(5)-fold preference for heterodimer formation, and the dissociation constant of the heterodimer in phosphate-buffered saline is approximately 30 nM at pH 7 and 20 degrees C. Studies of the pH and ionic strength dependence of stability confirm that heterodimer formation is favored largely as a result of electrostatic destabilization of the homodimers.Our successful design strategy supports previous conclusions about the mechanism of interaction between the Fos and Jun oncoproteins. These results have implications for protein design, as they show that it is possible to design peptides with simple sequences that have a very high preference to pair with one another. Finally, these sequences with 'Velcro'-like properties may have practical applications, including use as an affinity reagent, in lieu of an epitope tag, or as a way of bringing together two molecules in a cell.
Load More