ML
Marina López‐Solà
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
1,757
h-index:
37
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Altered Corticostriatal Functional Connectivity in Obsessive-compulsive Disorder

Ben Harrison et al.Nov 1, 2009
Neurobiological models of obsessive-compulsive disorder (OCD) emphasize disturbances in the function and connectivity of brain corticostriatal networks, or "loops." Although neuroimaging studies of patients have supported this network model of OCD, very few have applied measurements that are sensitive to brain connectivity features.Using resting-state functional magnetic resonance imaging, we tested the hypothesis that OCD is associated with disturbances in the functional connectivity of primarily ventral corticostriatal regions, measured from coherent spontaneous fluctuations in the blood oxygenation level-dependent (BOLD) signal.Case-control cross-sectional study.Hospital referral OCD unit and magnetic resonance imaging facility.A total of 21 patients with OCD (10 men, 11 women) and 21 healthy control subjects matched for age, sex, and estimated intelligence.Voxelwise statistical parametric maps testing the strength of functional connectivity of 4 striatal seed regions of interest (dorsal caudate nucleus, ventral caudate/nucleus accumbens, dorsal putamen, and ventral putamen) with remaining brain areas.For both groups, there was a clear distinction in the pattern of cortical connectivity of dorsal and ventral striatal regions, consistent with the notion of segregated motor, associative, and limbic corticostriatal networks. Between groups, patients with OCD had significantly increased functional connectivity along a ventral corticostriatal axis, implicating the orbitofrontal cortex and surrounding areas. The specific strength of connectivity between the ventral caudate/nucleus accumbens and the anterior orbitofrontal cortex predicted patients' overall symptom severity (r(2) = 0.57; P < .001). Additionally, patients with OCD showed evidence of reduced functional connectivity of the dorsal striatum and lateral prefrontal cortex, and of the ventral striatum with the region of the midbrain ventral tegmental area.This study directly supports the hypothesis that OCD is associated with functional alterations of brain corticostriatal networks. Specifically, our findings emphasize abnormal and heightened functional connectivity of ventrolimbic corticostriatal regions in patients with OCD.
0

Consistency and functional specialization in the default mode brain network

Ben Harrison et al.Jul 10, 2008
The notion of a “default mode of brain function” has taken on certain relevance in human neuroimaging studies and in relation to a network of lateral parietal and midline cortical regions that show prominent activity fluctuations during passive imaging states, such as rest. In this study, we perform three fMRI experiments that demonstrate consistency and specialization in the default mode network. Correlated activity fluctuations of default mode network regions are identified during ( i ) eyes-closed spontaneous rest, ( ii ) activation by moral dilemma, and ( iii ) deactivation by Stroop task performance. Across these imaging states, striking uniformity is shown in the basic anatomy of the default mode network, but with both tasks clearly and differentially modulating this activity compared with spontaneous fluctuations of the network at rest. Against rest, moral dilemma is further shown to evoke regionally specific activity increases of hypothesized functional relevance. Mapping spontaneous and task-related brain activity will help to constrain the meaning of the default mode network. These findings are discussed in relation to recent debate on the topic of default modes of brain function.
0
Citation347
0
Save
0

Somatic and vicarious pain are represented by dissociable multivariate brain patterns

Anjali Krishnan et al.Jun 14, 2016
Understanding how humans represent others’ pain is critical for understanding pro-social behavior. ‘Shared experience’ theories propose common brain representations for somatic and vicarious pain, but other evidence suggests that specialized circuits are required to experience others’ suffering. Combining functional neuroimaging with multivariate pattern analyses, we identified dissociable patterns that predicted somatic (high versus low: 100%) and vicarious (high versus low: 100%) pain intensity in out-of-sample individuals. Critically, each pattern was at chance in predicting the other experience, demonstrating separate modifiability of both patterns. Somatotopy (upper versus lower limb: 93% accuracy for both conditions) was also distinct, located in somatosensory versus mentalizing-related circuits for somatic and vicarious pain, respectively. Two additional studies demonstrated the generalizability of the somatic pain pattern (which was originally developed on thermal pain) to mechanical and electrical pain, and also demonstrated the replicability of the somatic/vicarious dissociation. These findings suggest possible mechanisms underlying limitations in feeling others’ pain, and present new, more specific, brain targets for studying pain empathy.
0

Towards a neurophysiological signature for fibromyalgia

Marina López‐Solà et al.Aug 31, 2016
Abstract Patients with fibromyalgia (FM) show characteristically enhanced unpleasantness to painful and nonpainful sensations accompanied by altered neural responses. The diagnostic potential of such neural alterations, including their sensitivity and specificity to FM (vs healthy controls) is unknown. We identify a brain signature that characterizes FM central pathophysiology at the neural systems level. We included 37 patients with FM and 35 matched healthy controls, and analyzed functional magnetic resonance imaging responses to (1) painful pressure and (2) nonpainful multisensory (visual–auditory–tactile) stimulation. We used machine-learning techniques to identify a brain-based FM signature. When exposed to the same painful stimuli, patients with FM showed greater neurologic pain signature (NPS; Wager et al., 2013. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013;368:1388–97) responses. In addition, a new pain-related classifier (“FM-pain”) revealed augmented responses in sensory integration (insula/operculum) and self-referential (eg, medial prefrontal) regions in FM and reduced responses in the lateral frontal cortex. A “multisensory” classifier trained on nonpainful sensory stimulation revealed augmented responses in the insula/operculum, posterior cingulate, and medial prefrontal regions and reduced responses in the primary/secondary sensory cortices, basal ganglia, and cerebellum. Combined activity in the NPS, FM pain, and multisensory patterns classified patients vs controls with 92% sensitivity and 94% specificity in out-of-sample individuals. Enhanced NPS responses partly mediated mechanical hypersensitivity and correlated with depression and disability ( P uncorrected < 0.05); FM-pain and multisensory responses correlated with clinical pain ( P uncorrected < 0.05). The study provides initial characterization of individual patients with FM based on pathophysiological, symptom-related brain features. If replicated, these brain features may constitute objective neural targets for therapeutic interventions. The results establish a framework for assessing therapeutic mechanisms and predicting treatment response at the individual level.
0

Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder

Murat Demirtaş et al.Apr 28, 2016
Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc.
44

Evoked pain intensity representation is distributed across brain systems: A multistudy mega-analysis

Bogdan Petre et al.Jul 4, 2020
ABSTRACT Information is coded in the brain at different scales for different phenomena: locally, distributed across regions and networks, and globally. For pain, the scale of representation is controversial. Although generally believed to be an integrated cognitive and sensory phenomenon implicating diverse brain systems, quantitative characterizations of which regions and networks are sufficient to represent pain are lacking. In this meta-analysis (or mega-analysis) using data from 289 participants across 10 studies, we use model comparison combined with multivariate predictive models to investigate the spatial scale and location of acute pain representation. We compare models based on (a) a single most pain-predictive module, either previously identified elementary regions or a single best large-scale cortical resting-state network module; (b) selected cortical-subcortical systems related to evoked pain in prior literature (‘multi-system models’); and (c) a model spanning the full brain. We estimate the accuracy of pain intensity predictions using cross validation (7 studies) and subsequently validate in three independent holdout studies. All spatial scales convey information about pain intensity, but distributed, multi-system models better characterize pain representations than any individual region or network (e.g. multisystem models explain >20% more of individual subject pain ratings than the best elementary region). Full brain models showed no predictive advantage over multi-system models. These findings quantify the extent that representation of evoked pain experience is distributed across multiple cortical and subcortical systems, show that pain representation is not circumscribed by any elementary region or conical network, and provide a blueprint for identifying the spatial scale of information in other domains. Significance Statement We define modular, multisystem and global views of brain function, use multivariate fMRI decoding to characterize pain representations at each level, and provide evidence for a multisystem representation of evoked pain. We further show that local views necessarily exclude important components of pain representation, while a global full brain representation is superfluous, even though both are viable frameworks for representing pain. These findings quantitatively juxtapose and reconcile divergent conclusions from evoked pain studies within a generalized neuroscientific framework, and provide a blueprint for investigating representational architecture for diverse brain processes. Author Note Data storage supported by the University of Colorado Boulder “PetaLibrary”. Research funded by NIMH R01 MH076136, NIDA R01 DA046064 and NIDA R01 DA035484. Lauren Atlas is supported in part by funding from the Intramural Research Program of the National Center for Complementary and Integrative Health, National Institutes of Health (ZIA-AT000030). Marina Lopez-Sola is supported by a Serra Hunter fellow lecturer program. We would like to thank Dr. Christian Buchel for contributing data to this project, and Dr. Marta Čeko for comments and feedback on the manuscript.
1

Processing of Pain by the Developing Brain: Evidence of Differences Between Adolescent and Adult Females

Tong Han et al.May 17, 2021
Abstract Adolescence is a sensitive period for both brain development and the emergence of chronic pain particularly in females. However, the brain mechanisms supporting pain perception during adolescence remain unclear. This study compares perceptual and brain responses to pain in female adolescents and adults to characterize pain processing in the developing brain. Thirty adolescent (ages 13-17) and thirty adult (ages 35-55) females underwent a functional MRI scan involving acute experimental pain. Participants received 12 ten-second noxious pressure stimuli which were applied to the left thumbnail at 2.5 and 4 kg/cm 2 , and rated pain intensity and unpleasantness on a visual analogue scale. We found a significant group-by-stimulus intensity interaction on pain ratings. Compared to adults, adolescents reported greater pain intensity and unpleasantness in response to 2.5 kg/cm 2 , but not 4 kg/cm 2 . Adolescents showed greater medial-lateral prefrontal cortex (PFC) and supramarginal gyrus activation in response to 2.5 kg/cm 2 , and greater medial PFC and rostral anterior cingulate responses to 4 kg/cm 2 . Adolescents showed augmented pain-evoked responses in the Neurologic Pain Signature and greater activation in the default mode (DMN) and ventral attention (VAN) networks. Also, the amygdala and associated regions played a stronger role in predicting pain intensity in adolescents, and activity in DMN and VAN regions more strongly mediated the relationship between stimulus intensity and pain ratings. This study provides the first evidence of augmented pain-evoked brain responses in healthy female adolescents involving regions important for nociceptive, affective and cognitive processing, in line with their augmented sensitivity to low-intensity noxious stimuli.