Abstract Amyotrophic lateral sclerosis (ALS)-causing mutations clearly implicate ubiquitously expressed and predominantly nuclear RNA binding proteins (RBPs), which form pathological cytoplasmic inclusions in this context. However, the possibility that wild-type RBPs mislocalize without necessarily becoming constituents of ALS cytoplasmic inclusions themselves remains unexplored. We hypothesized that nuclear-to-cytoplasmic mislocalization of the RBP Fused in Sarcoma (FUS), in an unaggregated state, may occur more widely in ALS that previously recognized. To address this hypothesis, we analysed motor neurons (MNs) from an human ALS induced-pluripotent stem cells (iPSC) model caused by the VCP mutation. Additionally, we examined mouse transgenic models and post-mortem tissue from human sporadic ALS cases. We report nuclear-to-cytoplasmic mislocalization of FUS in both VCP-mutation related ALS and, crucially, in sporadic ALS spinal cord tissue from multiple cases. Furthermore, we provide evidence that FUS protein binds to an aberrantly retained intron within the SFPQ transcript, which is exported from the nucleus into the cytoplasm. Collectively, these data support a model for ALS pathogenesis whereby aberrant intron-retention in SFPQ transcripts contributes to FUS mislocalization through their direct interaction and nuclear export. In summary, we report widespread mislocalization of the FUS protein in ALS and propose a putative underlying mechanism for this process.