AG
Arie Geerlof
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
257
h-index:
38
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Defining the RBPome of T helper cells to study higher order post-transcriptional gene regulation

Kai Hoefig et al.Aug 20, 2020
Abstract Post-transcriptional gene regulation is complex, dynamic and ensures proper T cell function. The targeted transcripts can simultaneously respond to various factors as evident for Icos , an mRNA regulated by several RNA binding proteins (RBPs), including Roquin. However, fundamental information about the entire RBPome involved in post-transcriptional gene regulation in T cells is lacking. Here, we applied global RNA interactome capture (RNA-IC) and orthogonal organic phase separation (OOPS) to human and mouse primary T cells and identified the core T cell RBPome. This defined 798 mouse and 801 human proteins as RBPs, unexpectedly containing signaling proteins like Stat1, Stat4 and Vav1. Based on the vicinity to Roquin-1 in proximity labeling experiments, we selected ∼50 RBPs for testing coregulation of Roquin targets. Induced expression of these candidate RBPs in wildtype and Roquin-deficient T cells unraveled several Roquin-independent contributions, but also revealed Celf1 as a new Roquin-1-dependent and target-specific coregulator of Icos . One sentence statement We provide an atlas of RNA-binding proteins in human and mouse T helper cells as a resource for studying higher order post-transcriptional gene regulation.
0
Citation4
0
Save
8

Structural basis for specific RNA recognition by the alternative splicing factor RBM5

Komal Soni et al.Dec 13, 2022
Abstract The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that are implicated in cancer and regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis -regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10. Highlights Multiple RNA binding domains enable differential recognition of distinct RNA motifs to regulate alternative splicing The RRM1-ZnF1 domains of RBM5 mediate specific recognition of cis regulatory RNA motifs to modulate alternative splicing RRM1-ZnF1 sandwich the target RNA for non-canonical recognition of a GG dinucleotide RRM1-ZnF1-RRM2 bind cooperatively to contiguous cis -regulatory motifs in caspase-2 and NUMB pre-mRNAs
0

Molecular recognition and dynamics of linear poly-ubiquitins: integrating coarse-grain simulations and experiments

Alexander Jussupow et al.Apr 14, 2020
Poly-ubiquitin chains are flexible multidomain proteins, whose conformational dynamics enable their molecular recognition by a large number of partners in multiple biological pathways. By using alternative linkage, it is possible to obtain poly-ubiquitin molecules with different dynamical properties. This flexibility is further increased by the possibility to tune the length of poly-ubiquitin chains. Characterizing the dynamics of poly-ubiquitins as a function of their length is thus relevant to understand their biology. Structural characterization of poly-ubiquitin conformational dynamics is challenging both experimentally and computationally due to increasing system size and conformational variability. Here, by developing highly efficient and accurate small-angle X-ray scattering driven Martini coarse-grain simulations, we characterize the dynamics of linear M1-linked di-, tri- and tetra-ubiquitin chains. Our data show that the behavior of the di-ubiquitin subunits is independent of the presence of additional ubiquitin modules. We propose that the conformational space sampled by linear poly-ubiquitins, in general, may follow a simple self-avoiding polymer model. These results, combined with experimental data from small angle X-ray scattering, biophysical techniques and additional simulations show that binding of NEMO, a central regulator in the NF-κB pathway, to linear poly-ubiquitin obeys a 2:1 (NEMO:poly-ubiquitin) stoichiometry in solution, even in the context of four ubiquitin units. Eventually, we show how the conformational properties of long poly-ubiquitins may modulate the binding with their partners in a length-dependent manner.### Competing Interest StatementThe authors have declared no competing interest.
4

Modulation of pre-mRNA structure by hnRNP proteins regulates alternative splicing of MALT1

Alisha Jones et al.Oct 12, 2021
ABSTRACT Alternative splicing is controlled by differential binding of trans -acting RNA binding proteins (RBPs) to cis -regulatory elements in intronic and exonic pre-mRNA regions 1-3 . How secondary structure in the pre-mRNA transcripts affects recognition by RBPs and determines alternative exon usage is poorly understood. The MALT1 paracaspase is a key component of signaling pathways that mediate innate and adaptive immune responses 4 . Alternative splicing of MALT1 exon7 is critical for controlling optimal T cell activation 5,6 . Here, we demonstrate that processing of the MALT1 pre-mRNA depends on RNA structural elements that shield the 5’ and 3’ splice sites of the alternatively spliced exon7. By combining biochemical analyses with chemical probing and NMR we show that the RBPs hnRNP U and hnRNP L bind competitively and with comparable affinities to identical stem-loop RNA structures flanking the 5’ and 3’ splice sites of MALT1 exon7. While hnRNP U stabilizes RNA stem-loop conformations that maintain exon7 skipping, hnRNP L unwinds these RNA elements to facilitate recruitment of the essential splicing factor U2AF2 to promote exon7 inclusion. Our data represent a paradigm for the control of splice site selection by differential RBP binding and modulation of pre-mRNA structure.
0

A helminth enzyme subverts macrophage-mediated immunity by epigenetic targeting of prostaglandin synthesis

Sina Bohnacker et al.Dec 6, 2024
The molecular mechanisms by which worm parasites evade host immunity are incompletely understood. In a mouse model of intestinal helminth infection using Heligmosomoides polygyrus bakeri ( Hpb ), we show that helminthic glutamate dehydrogenase (heGDH) drives parasite chronicity by suppressing macrophage-mediated host defense. Combining RNA-seq, ChIP-seq, and targeted lipidomics, we identify prostaglandin E 2 (PGE 2 ) as a major immune regulatory mechanism of heGDH. The induction of PGE 2 and other immunoregulatory factors, including IL-12 family cytokines and indoleamine 2,3-dioxygenase 1, by heGDH required p300-mediated histone acetylation, whereas the enzyme’s catalytic activity suppressed the synthesis of type 2–promoting leukotrienes by macrophages via 2-hydroxyglutarate. By contrast, the induction of immunoregulatory factors involved the heGDH N terminus by potentially mediating interactions with cellular targets (CD64 and GPNMB) identified by proteomics. Type 2 cytokines counteracted suppressive effects of heGDH on host defense, indicating that type 2 immunity can limit helminth-driven immune evasion. Thus, helminths harness a ubiquitous metabolic enzyme to epigenetically target type 2 macrophage activation and establish chronicity.
5

Collagen VI regulates motor circuit plasticity and motor performance by cannabinoid modulation

Daniel Lam et al.Sep 5, 2021
ABSTRACT Collagen VI is a key component of muscle basement membranes, and genetic variants can cause monogenic muscular dystrophies. Conversely, human genetic studies recently implicated collagen VI in central nervous system function, with variants causing the movement disorder dystonia. To elucidate the neurophysiological role of collagen VI, we generated mice with a truncation of the dystonia-related collagen α3 (VI) (COL6A3) C-terminal domain (CTD). These Col6a3 CTT mice showed a recessive dystonia-like phenotype. We found that COL6A3 interacts with the cannabinoid receptor 1 (CB1R) complex in a CTD-dependent manner. Col6a3 CTT mice have impaired homeostasis of excitatory input to the basal pontine nuclei (BPN), a motor control hub with dense COL6A3 expression, consistent with deficient endocannabinoid signaling. Aberrant synaptic input in the BPN was normalized by a CB1R agonist, and motor performance in Col6a3 CTT mice was improved by CB1R agonist treatment. Our findings identify a readily therapeutically addressable synaptic mechanism for motor control. SIGNIFICANCE STATEMENT Dystonia is a movement disorder characterized by involuntary movements. We previously identified genetic variants affecting a specific domain of the COL6A3 protein as a cause of dystonia. Here, we we created mice lacking the affected domain and observed an analogous movement disorder. Using a protein interaction screen, we found that the affected COL6A3 domain mediates an interaction with the cannabinoid receptor CB1R. Concordantly, our COL6A3-deficient mice showed a deficit in synaptic plasticity linked to a deficit in cannabinoid signaling. Pharmacological cannabinoid augmentation rescued the motor impairment of the mice. Thus, cannabinoid augmentation could be a promising avenue for treating dystonia, and we have identified a possible molecular mechanism mediating this.