WB
Walter Boron
Author with expertise in Molecular Mechanisms of Aquaporins in Physiology and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(53% Open Access)
Cited by:
6,697
h-index:
79
/
i10-index:
216
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors.

Walter Boron et al.Jan 1, 1976
The intracellular pH (pHi) of squid giant axons has been measured using glass pH microelectrodes. Resting pHi in artificial seawater (ASW) (pH 7.6-7.8) at 23 degrees C was 7.32 +/- 0.02 (7.28 if corrected for liquid junction potential). Exposure of the axon to 5% CO2 at constant external pH caused a sharp decrease in pHi, while the subsequent removal of the gas caused pHi to overshoot its initial value. If the exposure to CO2 was prolonged, two additional effects were noted: (a) during the exposure, the rapid initial fall in pHi was followed by a slow rise, and (b) after the exposure, the overshoot was greatly exaggerated. Application of external NH4Cl caused pHi to rise sharply; return to normal ASW caused pHi to return to a value below its initial one. If the exposure to NH4Cl was prolonged, two additional effects were noted: (a) during the exposure, the rapid initial rise in pHi was followed by a slow fall, and (b) after the exposure, the undershoot was greatly exaggerated. Exposure to several weak acid metabolic inhibitors caused a fall in pHi whose reversibility depended upon length of exposure. Inverting the electrochemical gradient for H+ with 100 mM K-ASW had no effect on pHi changes resulting from short-term exposure to azide. A mathematical model explains the pHi changes caused by NH4Cl on the basis of passive movements of both NH3 and NH4+. The simultaneous passive movements of CO2 and HCO3-cannot explain the results of the CO2 experiments; these data require the postulation of an active proton extrusion and/or sequestration mechanism.
0

Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport.

Walter Boron et al.Jan 1, 1983
We have used pH-, Na-, and Cl-sensitive microelectrodes to study basolateral HCO3- transport in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum. In one series of experiments, we lowered basolateral pH (pHb) from 7.5 to 6.8 by reducing [HCO3-]b from 10 to 2 mM at a constant pCO2. This reduction of pHb and [HCO3-]b causes a large (approximately 0.35), rapid fall in pHi as well as a transient depolarization of the basolateral membrane. Returning pHb and [HCO3-]b to normal has the opposite effects. Similar reductions of luminal pH (pHl) and [HCO3-]l have only minor effects. The reduction of [HCO3-]b and pHb also produces a reversible fall in aiNa. In a second series of experiments, we reduced [Na+]b at constant [HCO3-]b and pHb, and also observed a rapid fall in pHi and a transient basolateral depolarization. These changes are reversed by returning [Na+]b to normal. The effects of altering [Na+]l in the presence of HCO3-, or of altering [Na+]b in the nominal absence of HCO3-, are substantially less. Although the effects on pHi and basolateral membrane potential of altering either [HCO3-]b or [Na+]b are largely blocked by 4-acetamido-4-isothiocyanostilbene-2,2'-disulfonate (SITS), they are not affected by removal of Cl-, nor are there accompanying changes in aiCl consistent with a tight linkage between Cl- fluxes and those of Na+ and HCO3-. The aforementioned changes are apparently mediated by a single transport system, not involving Cl-. We conclude that HCO3- transport is restricted to the basolateral membrane, and that HCO3- fluxes are linked to those of Na+. The data are compatible with an electrogenic Na/HCO3 transporter that carries Na+, HCO3-, and net negative charge in the same direction.
0

pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3-

G. Boyarsky et al.Dec 1, 1988
We have developed a technique to measure the fluorescence of a pH-sensitive dye (2,7-biscarboxyethyl-5(6)-carboxyfluorescein) in single glomerular mesangial cells in culture. The intracellular fluorescence excitation ratio of the dye was calibrated using the nigericin-high-K+ approach. In the absence of CO2-HCO3-, mesangial cells that are acid loaded by an NH+4 prepulse exhibit a spontaneous intracellular pH (pHi) recovery that is blocked either by ethylisopropylamiloride (EIPA) or removal of external Na+. This pHi recovery most probably reflects the activity of a Na+-H+ exchanger. When the cells are switched from a N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solution to one containing CO2-HCO3-, there is an abrupt acidification due to CO2 entry, which is followed by a spontaneous recovery of pHi to a steady-state value higher than that prevailing in HEPES. Both the rate of recovery and the higher steady-state pHi imply that the application of CO2-HCO3- introduces an increase in net acid extrusion from the cell. One third of total net acid extrusion in CO2-HCO3- is EIPA sensitive and most likely is mediated by the Na+-H+ exchanger. The remaining two thirds of acid extrusion could be caused by a decrease in the background acid-loading rate and/or the introduction of a new, HCO3- -dependent acid-extrusion mechanism. The HCO3- -induced alkalinization cannot be accounted for by a HCO3- -induced reduction in the acid-loading rate. The latter can be estimated by applying EIPA in the absence of HCO3- and observing the rate of pHi decline. We found that this acid-loading rate is only about one fifth as great as the total net acid extrusion rate in the presence of HCO3-. Indeed, two thirds of net acid extrusion in HCO3- is blocked by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), an inhibitor of HCO3- -dependent transport. Furthermore, the effects of EIPA and SITS were additive. Thus, in the presence of CO2-HCO3-, a SITS-sensitive-HCO3- -dependent transporter is the dominant mechanism of acid extrusion. This mechanism also accounts for the increase in steady-state pHi on addition of CO2-HCO3-.
7

Role of channels in the oxygen permeability of red blood cells

Pan Zhao et al.Aug 28, 2020
Abstract Many have believed that oxygen (O 2 ) crosses red blood cell (RBC) membranes by dissolving in lipids that offer no resistance to diffusion. However, using stopped-flow (SF) analyses of hemoglobin (Hb) absorbance spectra during O 2 off-loading from mouse RBCs, we now report that most O 2 traverses membrane-protein channels. Two agents excluded from the RBC interior markedly slow O 2 off-loading: p-chloromercuribenzenesulfonate (pCMBS) reduces inferred membrane O 2 permeability ( P Membrane ) by ∼82%, and 4,4’-diisothiocyanatostilbene-2,2’-disulfonate (DIDS), by ∼56%. Because neither likely produces these effects via membrane lipids, we examined RBCs from mice genetically deficient in aquaporin-1 (AQP1), the Rh complex (i.e., rhesus proteins RhAG + mRh), or both. The double knockout (dKO) reduces P Membrane by ∼55%, and pCMBS+dKO, by ∼91%. Proteomic analyses of RBC membranes, flow cytometry, hematology, and mathematical simulations rule out explanations involving other membrane proteins, RBC geometry, or extracellular unconvected fluid (EUF). By identifying the first two O 2 channels and pointing to the existence of other O 2 channel(s), all of which could be subject to physiological regulation and pharmacological intervention, our work represents a paradigm shift for O 2 handling.
7
Citation4
0
Save
0

Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permeable PIP2;1 aquaporin as carbonic anhydrase 4 interactor

Cun Wang et al.Nov 10, 2015
Daily dark periods cause an increase in the leaf CO2 concentration (Ci) and the continuing atmospheric [CO2] rise also increases Ci. Elevated Ci causes closing of stomatal pores thus regulating gas exchange of plants. The molecular signaling mechanisms leading to CO2-induced stomatal closure are only partially understood. Here we demonstrate that high intracellular CO2/HCO3- enhances currents mediated by the guard cell S-type anion channel SLAC1 when co-expressing either of the protein kinases OST1, CPK6 or CPK23 in Xenopus oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation and co-immunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Co-expression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified which abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity in Xenopus oocytes. These findings identify the CO2-permeable PIP2;1 aquaporin as key interactor of carbonic anhydrases, show functional reconstitution of extracellular CO2 signaling to ion channel regulation and implicate SLAC1 as a bicarbonate-responsive protein in CO2 regulation of S-type anion channels.
0

Novel RPTPγ and RPTPζ splice variants from mixed neuron–astrocyte hippocampal cultures as well as from the hippocampi of newborn and adult mice

Sara Taki et al.Jun 17, 2024
Receptor protein tyrosine phosphatases γ and ζ (RPTPγ and RPTPζ) are transmembrane signaling proteins with extracellular carbonic anhydrase–like domains that play vital roles in the development and functioning of the central nervous system (CNS) and are implicated in tumor suppression, neurodegeneration, and sensing of extracellular [CO 2 ] and [HCO 3 − ]. RPTPγ expresses throughout the body, whereas RPTPζ preferentially expresses in the CNS. Here, we investigate differential RPTPγ-RPTPζ expression in three sources derived from a wild-type laboratory strain of C57BL/6 mice: (a) mixed neuron–astrocyte hippocampal (HC) cultures 14 days post isolation from P0–P2 pups; (b) P0–P2 pup hippocampi; and (c) 9- to 12-week-old adult hippocampi. Regarding RPTPγ, we detect the Ptprg variant-1 (V1) transcript, representing canonical exons 1–30. Moreover, we newly validate the hypothetical assembly [XM_006517956] (propose name, Ptprg -V3), which lacks exon 14. Both transcripts are in all three HC sources. Regarding RPTPζ, we confirm the expression of Ptprz1 -V1, detecting it in pups and adults but not in cultures, and Ptprz1 -V3 through Ptprz1 -V7 in all three preparations. We newly validate hypothetical assemblies Ptprz1 -X1 (in cultures and pups), Ptprz1 -X2 (in all three), and Ptprz1 -X5 (in pups and adults) and propose to re-designate them as Ptprz1 -V0, Ptprz1 -V2, and Ptprz1 -V8, respectively. The diversity of RPTPγ and RPTPζ splice variants likely corresponds to distinct signaling functions, in different cellular compartments, during development vs later life. In contrast to previous studies that report divergent RPTPγ and RPTPζ protein expressions in neurons and sometimes in the glia, we observe that RPTPγ and RPTPζ co-express in the somata and processes of almost all HC neurons but not in astrocytes, in all three HC preparations.
Load More