Mouse gut intraepithelial lymphocytes (IEL) consist mainly (90%) of two populations of CD8+ T cells. One bears heterodimeric alpha/beta CD8 chains (Lyt-2+, Lyt-3+), a T cell receptor (TCR) made of alpha/beta chains, and is Thy-1+; it represents the progeny of T blasts elicited in Peyer's patches by antigenic stimulation. The other bears homodimeric alpha/alpha CD8+ chains, contains no beta chain mRNA, and is mostly Thy-1- and TCR-gamma/delta + or -alpha/beta +; it is thymo-independent and does not require antigenic stimulation, as shown by its presence: (a) in nude and scid mice; (b) in irradiated and thymectomized mice repopulated by T-depleted bone marrow cells bearing an identifiable marker; (c) in thymectomized mice treated by injections of monoclonal anti-CD8 antibody, which lead to total depletion of peripheral CD8+ T lymphocytes; and (d) in germ-free mice and in suckling mice. In young nude mice, alpha/alpha CD8 chains, CD3-TCR complexes, and TCR mRNAs (first gamma/delta) are found on IEL, while they are not detectable on or in peripheral or circulating lymphocytes or bone marrow cells. IEL, in contrast to mature T cells, contain mRNA for the RAG protein, which is required for the rearrangement of TCR and Ig genes. We propose that the gut epithelium (an endoderm derivative, as the thymic epithelium) has an inductive property, attracting progenitors of bone marrow origin, and triggering their TCR rearrangement and alpha/alpha CD8 chains expression, thus giving rise to a T cell population that appears to belong to the same lineage as gamma/delta thymocytes and to recognize an antigenic repertoire different from that of alpha/beta CD8+ IEL.