IC
Ita Costello
Author with expertise in Induction and Differentiation of Pluripotent Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
446
h-index:
15
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment

Nicola Reynolds et al.May 1, 2012
SummaryTranscriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.Graphical abstractGraphical AbstractHighlights► NuRD directly regulates the transcription of pluripotency genes ► The repressive activity of NuRD is required for ESC differentiation ► NuRD mediates transcriptional heterogeneity in ESC populations ► Transcription levels are determined by balanced activation and silencing
0
Citation220
0
Save
0

CytoCensus: mapping cell identity and division in tissues and organs using machine learning

Martin Hailstone et al.May 14, 2017
A major challenge in cell and developmental biology is the automated identification and quantitation of cells in complex multilayered tissues. We developed CytoCensus: an easily deployed implementation of supervised machine learning that extends convenient 2D “point- and-click” user training to 3D detection of cells in challenging datasets with ill-defined cell boundaries. In tests on these datasets, CytoCensus outperforms other freely available image analysis software in accuracy and speed of cell detection. We used CytoCensus to count stem cells and their progeny, and to quantify individual cell divisions from time-lapse movies of explanted Drosophila larval brains, comparing wild-type and mutant phenotypes. We further illustrate the general utility and future potential of CytoCensus by analysing the 3D organisation of multiple cell classes in Zebrafish retinal organoids and cell distributions in mouse embryos. CytoCensus opens the possibility of straightforward and robust automated analysis of developmental phenotypes in complex tissues.Summary Hailstone et al . develop CytoCensus, a “point-and-click” supervised machine-learning image analysis software to quantitatively identify defined cell classes and divisions from large multidimensional data sets of complex tissues. They demonstrate its utility in analysing challenging developmental phenotypes in living explanted Drosophila larval brains, mammalian embryos and zebrafish organoids. They further show, in comparative tests, a significant improvement in performance over existing easy-to-use image analysis software.![Figure][1] Highlights [1]: pending:yes
0

Eomes directs the formation of spatially and functionally diverse extra-embryonic hematovascular tissues

Bart Theeuwes et al.Aug 16, 2024
Summary During mouse gastrulation, extraembryonic mesoderm (ExEM) contributes to the extraembryonic yolk sac (YS) and allantois, both of which are essential for successful gestation. Although the genetic networks coordinating intra-embryonic mesodermal subtype specification are well-studied, the mechanisms driving ExEM diversification are poorly understood. Here, we reveal that embryoid body in vitro differentiation generates two distinct lineages of mesodermal cells matching YS and allantois respectively. Combining in vitro models with in vivo chimeric embryo analysis, we discover that Eomesodermin (Eomes) regulates the formation of a subset of YS-fated ExEM but is dispensable for allantois formation. Furthermore, simultaneous disruption of Eomes and T impedes the specification of any YS or allantois mesoderm, indicating compensatory roles for T during allantois formation when Eomes is disrupted. Our study highlights previously unrecognized functional and mechanistic diversity in ExEM diversification and endothelial development and introduces a tractable EB model to dissect the signaling pathways and transcriptional networks driving the formation of key extraembryonic tissues.