Abstract Background and Aims Oesophageal adenocarcinoma (OAC) is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, lack of driver mutations, and the dominance of large-scale genomic rearrangements. In this work we have characterised three potent and selective hit compounds identified in an innovative high-content phenotypic screening assay. The three hits include two approved drugs; elesclomol and disulfiram, and another small molecule compound, ammonium pyrrolidinedithiocarbamate. We uncover their mechanism of action, discover a targetable vulnerability, and gain insight into drug sensitivity for biomarker-based clinical trials in OAC. Methods Elesclomol, disulfiram, and ammonium pyrrolidinedithiocarbamate were systematically characterised across panels of oesophageal cell lines and patient-derived organoids. Drug treated oesophageal cell lines were morphologically profiled using a high-content, imaging platform. Compounds were assessed for efficacy across patient-derived organoids. Metabolomics and transcriptomics were assessed for the identification of oesophageal-cancer specific drug mechanisms and patient stratification hypotheses. Results High-content profiling revealed that all three compounds were highly selective for OAC over tissue-matched controls. Comparison of gene expression and morphological signatures unveiled a unified mechanism of action involving the accumulation of copper selectively in cancer cells, leading to dysregulation of proteostasis and cancer cell death. Basal omic analyses revealed proteasome and metabolic markers of drug sensitivity, forming the basis for biomarker-based clinical trials in OAC. Conclusions Integrated analysis of high-content imaging, transcriptomic and metabolomic data has revealed a new therapeutic mechanism for the treatment of OAC and represents an alternative target-agnostic drug discovery strategy.