JP
Justin Pritchard
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(64% Open Access)
Cited by:
864
h-index:
21
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress

Peter Bruno et al.Feb 27, 2017
Whereas cisplatin and carboplatin kill cancer cells by inducing DNA damage, another platinum derivative, oxaliplatin, induces cell death by triggering ribosome biogenesis stress. Cisplatin and its platinum analogs, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. Although cisplatin and carboplatin are used primarily in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively to treat colorectal and other gastrointestinal cancers. Here we utilize a unique, multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents, as well as more recently developed cisplatin analogs. We show that oxaliplatin, unlike cisplatin and carboplatin, does not kill cells through the DNA-damage response. Rather, oxaliplatin kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the distinct clinical implementation of oxaliplatin relative to cisplatin, and it might enable mechanistically informed selection of distinct platinum drugs for distinct malignancies. These data highlight the functional diversity of core components of front-line cancer therapy and the potential benefits of applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs.
0
Citation427
0
Save
0

Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform

Jeremy Rock et al.Feb 6, 2017
The development of new drug regimens that allow rapid, sterilizing treatment of tuberculosis has been limited by the complexity and time required for genetic manipulations in Mycobacterium tuberculosis. CRISPR interference (CRISPRi) promises to be a robust, easily engineered and scalable platform for regulated gene silencing. However, in M. tuberculosis, the existing Streptococcus pyogenes Cas9-based CRISPRi system is of limited utility because of relatively poor knockdown efficiency and proteotoxicity. To address these limitations, we screened eleven diverse Cas9 orthologues and identified four that are broadly functional for targeted gene knockdown in mycobacteria. The most efficacious of these proteins, the CRISPR1 Cas9 from Streptococcus thermophilus (dCas9Sth1), typically achieves 20- to 100-fold knockdown of endogenous gene expression with minimal proteotoxicity. In contrast to other CRISPRi systems, dCas9Sth1-mediated gene knockdown is robust when targeted far from the transcriptional start site, thereby allowing high-resolution dissection of gene function in the context of bacterial operons. We demonstrate the utility of this system by addressing persistent controversies regarding drug synergies in the mycobacterial folate biosynthesis pathway. We anticipate that the dCas9Sth1 CRISPRi system will have broad utility for functional genomics, genetic interaction mapping and drug-target profiling in M. tuberculosis. Screening Cas9 orthologues to improve CRISPR interference in mycobacteria identified four that are broadly functional for targeted gene knockdown, one of which (dCas9Sth1) achieves a 20–100-fold knockdown of endogenous gene expression with minimal proteotoxicity.
0
Citation425
0
Save
3

Refined quantification of infection bottlenecks and pathogen dissemination with STAMPR

Karthik Hullahalli et al.Apr 28, 2021
Abstract Pathogen population dynamics during infection are critical determinants of infection susceptibility and define patterns of dissemination. However, deciphering these dynamics, particularly founding population sizes in host organs and patterns of dissemination between organs, is difficult because measuring bacterial burden alone is insufficient to observe these patterns. Introduction of allelic diversity into otherwise identical bacteria using DNA barcodes enables sequencing-based measurements of these parameters, in a method known as STAMP (Sequence Tag-Based Analysis of Microbial Population dynamics). However, bacteria often undergo unequal expansion within host organs, resulting in marked differences in the frequencies of barcodes in input and output libraries. Here, we show that these differences confound STAMP-based analyses of founding population sizes and dissemination patterns. We present STAMPR, a successor to STAMP that accounts for such population expansions. Using data from systemic infection of barcoded Extraintestinal Pathogenic E. coli we show that this new framework along with the metrics it yields enhances the fidelity of measurements of bottlenecks and dissemination patterns. STAMPR was also validated on an independent, barcoded Pseudomonas aeruginosa dataset, uncovering new patterns of dissemination within the data. This framework (available at https://github.com/hullahalli/stampr_rtisan ), when coupled with barcoded datasets, enables a more complete assessment of within-host bacterial population dynamics. Importance Barcoded bacteria are often employed to monitor pathogen population dynamics during infection. The accuracy of these measurements is diminished by unequal bacterial expansion rates. Here, we develop computational tools to circumvent this limitation and establish additional metrics that collectively enhance the fidelity of measuring within-host pathogen founding population sizes and dissemination patterns. These new tools will benefit future studies of the dynamics of pathogens and symbionts within their respective hosts and may have additional barcode-based applications beyond host-microbe interactions.
3
Citation2
0
Save
2

The role of migration in mutant evolution in fragmented populations

Jesse Kreger et al.Jun 10, 2021
Abstract Mutant evolution in fragmented populations has been studied extensively in evolutionary biology. With an increased focus on evolutionary dynamics in medical research, quantification of mutant load in fragmented populations with varying levels of migration has become especially important. Examples of fragmented populations are hematopoietic stem cell niches in the bone marrow where cells can re-circulate between niches through the blood, or colonic crypts where movement of cells across different crypts is not thought to be common. Here we use a combination of experiments and theory to investigate the role of migration in mutant distribution. In the case of neutral mutants, the experiments confirmed that while the mean number of mutants is not influenced by migration, the probability distribution is, which manifested itself in a change in the skewedness of the distribution of the mutant numbers in the demes. In the case of disadvantageous mutants, we investigated the phenomenon of the increase in the expected number of mutants compared to that of the selection-mutation balance. In a single deme, this increase is observed when the deme size is lower than the critical size, N c . In a fragmented system that consists of connected demes with a probability of migration, the increase in mutant numbers above the selection-mutation balance can be maintained in small ( N < N c ) demes as long as the migration rate is sufficiently small. The migration rate above which the mutants approach the selection-mutation balance decays exponentially with N/N c . These findings are relevant in the context of the complex and poorly understood processes that may lead to changes in the clonal composition in tissues and tumors.
2
Citation1
0
Save
5

Functional genomic analysis of adult and pediatric brain tumor isolates

Pia Hoellerbauer et al.Jan 6, 2023
Adult and pediatric tumors display stark differences in their mutation spectra and chromosome alterations. Here, we attempted to identify common and unique gene dependencies and their associated biomarkers among adult and pediatric tumor isolates using functional genetic lethal screens and computational modeling.We performed CRISRP-Cas9 lethality screens in two adult glioblastoma (GBM) tumor isolates and five pediatric brain tumor isolates representing atypical teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and medulloblastoma. We then integrated the screen results with machine learning-based gene-dependency models generated from data from >900 cancer cell lines.We found that >50% of candidate dependencies of 280 identified were shared between adult GBM tumors and individual pediatric tumor isolates. 68% of screen hits were found as nodes in our network models, along with shared and tumor-specific predictors of gene dependencies. We investigated network predictors associated with ADAR, EFR3A, FGFR1 (pediatric-specific), and SMARCC2 (ATRT-specific) gene dependency among our tumor isolates.The results suggest that, despite harboring disparate genomic signatures, adult and pediatric tumor isolates share a preponderance of genetic dependences. Further, combining data from primary brain tumor lethality screens with large cancer cell line datasets produced valuable insights into biomarkers of gene dependency, even for rare cancers.Our results demonstrate that large cancer cell lines data sets can be computationally mined to identify known and novel gene dependency relationships in adult and pediatric human brain tumor isolates. Gene dependency networks and lethality screen results represent a key resource for neuro-oncology and cancer research communities. We also highlight some of the challenges and limitations of this approach.
0

Evolution of the nonsense-mediated decay (NMD) pathway is associated with decreased cytolytic immune infiltration

Boyang Zhao et al.Feb 4, 2019
The somatic co-evolution of tumors and the cellular immune responses that combat them drives the diversity of immune-tumor interactions. This includes tumor mutations that generate neo-antigenic epitopes that elicit cytotoxic T-cell activity and subsequent pressure to select for genetic loss of antigen presentation. Most studies have focused on how tumor missense mutations can drive tumor immunity, but frameshift mutations have the potential to create far greater antigenic diversity. However, expression of this antigenic diversity is potentially regulated by Nonsense Mediated Decay (NMD) and NMD has been shown to be of variable efficiency in cancers. Using TCGA datasets, we derived novel patient-level metrics of "NMD burden" and interrogated how different mutation and most importantly NMD burdens influence cytolytic activity using machine learning models and survival outcomes. We find that NMD is a significant and independent predictor of immune cytolytic activity. Different indications exhibited varying dependence on NMD and mutation burden features. We also observed significant co-alteration of genes in the NMD pathway, with a global increase in NMD efficiency in patients with NMD co-alterations. Finally, NMD burden also stratified patient survival in multivariate regression models. Our work suggests that beyond selecting for mutations that elicit NMD in tumor suppressors, tumor evolution may react to the selective pressure generated by inflammation to globally enhance NMD through coordinated amplification and/or mutation.
Load More