BJ
Benjamin Jenkins
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
5
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
44

Emergent RNA-RNA interactions can promote stability in a nascent phototrophic endosymbiosis

Benjamin Jenkins et al.Apr 11, 2021
ABSTRACT Eukaryote-eukaryote endosymbiosis was responsible for the spread of chloroplast (plastid) organelles. Stability is required for the metabolic and genetic integration that drives the establishment of new organelles, yet the mechanisms which act to stabilise nascent endosymbioses – between two fundamentally selfish biological organisms – are unclear. Theory suggests that enforcement mechanisms, which punish misbehaviour, may act to stabilise such interactions by resolving conflict. However, how such mechanisms can emerge in a nascent endosymbiosis has yet to be explored. Here, we propose that endosymbiont-host RNA-RNA interactions, arising from digestion of the endosymbiont population, can result in a cost to host growth for breakdown of the endosymbiosis. Using the model nascent endosymbiosis, Paramecium bursaria – Chlorella spp., we demonstrate that this mechanism is dependent on the host RNA-interference (RNAi) system. We reveal through small RNA (sRNA) sequencing that endosymbiont-derived mRNA released upon endosymbiont digestion can be processed by the host RNAi system into 23-nt sRNA. We predict multiple regions of shared sequence identity between endosymbiont and host mRNA, and demonstrate through delivery of synthetic endosymbiont sRNA that exposure to these regions can knock-down expression of complementary host genes, resulting in a cost to host growth. This process of host gene knock-down in response to endosymbiont-derived RNA processing by host RNAi factors, which we term ‘RNAi-collisions’, represents a mechanism which can promote stability in a nascent eukaryote-eukaryote endosymbiosis. By imposing a cost for breakdown of the endosymbiosis, endosymbiont-host RNA-RNA interactions may drive maintenance of the symbiosis across fluctuating ecological conditions and symbiotic status. SIGNIFICANCE STATEMENT Stable endosymbiosis between eukaryotic microbes has driven the evolution of further cellular complexity. Yet the mechanisms which can act to stabilise a nascent eukaryote-eukaryote endosymbiosis are unclear. Using the model nascent endosymbiotic system, Paramecium bursaria–Chlorella , we demonstrate that endosymbiont-host RNA-RNA interactions can drive a cost to host growth upon endosymbiont digestion, punishing the host for misbehaviour. These RNA-RNA interactions are facilitated by the host RNA-interference system. For endosymbiont mRNA sharing a high-level of sequence identity with host transcripts, this process can result in host gene knock-down. We propose that these endosymbiont-host RNA-RNA interactions–‘RNAi collisions’–represent a viable enforcement mechanism to sanction the host for breakdown of the endosymbiosis, promoting the stability of a nascent endosymbiotic interaction.
44
Citation3
0
Save
12

Characterisation of the RNA-interference pathway as a Tool for Genetics in the Nascent Phototrophic Endosymbiosis, Paramecium bursaria

Benjamin Jenkins et al.Dec 16, 2020
ABSTRACT Endosymbiosis was fundamental for the evolution of eukaryotic complexity. Endosymbiotic interactions can be dissected through forward and reverse-genetic experiments, such as RNA-interference (RNAi). However, distinguishing small (s)RNA pathways in a eukaryote-eukaryote endosymbiotic interaction is challenging. Here, we investigate the repertoire of RNAi pathway protein-encoding genes in the model nascent endosymbiotic system, Paramecium bursaria – Chlorella spp. Using comparative genomics and transcriptomics supported by phylogentics, we identify essential proteome components of the small interfering (si)RNA, scan (scn)RNA, and internal eliminated sequence (ies)RNA pathways. Our analyses reveal that copies of these components have been retained throughout successive whole genome duplication (WGD) events in the Paramecium clade. We then validate feeding-induced siRNA-based RNAi in P. bursaria via knock-down of the splicing factor, u2af1 , which we show to be crucial to host growth. Finally, using simultaneous knock-down paradox controls to rescue the effect u2af1 knock-down, we demonstrate that feeding-induced RNAi in P. bursaria is dependent upon a core pathway of host-encoded Dcr1 , Piwi and Pds1 components. Our experiments confirm the presence of a functional, host-derived RNAi pathway in P. bursaria that generates 23-nt siRNA, validating use of the P. bursaria - Chlorella spp. system to investigate the genetic basis of a nascent endosymbiosis.
12
Citation1
0
Save
41

Identification of a Non-Canonical Ciliate Nuclear Genetic Code Where UAA and UAG Code for Different Amino Acids

Jamie McGowan et al.Dec 17, 2022
Abstract The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the “universal” genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3’UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.
41
Citation1
0
Save
0

C. elegans heritably adapts to P. vranovensis infection via a mechanism that requires the cysteine synthases cysl-1 and cysl-2

Nick Burton et al.Jun 18, 2019
Parental exposure to pathogens can prime offspring immunity in diverse organisms. The mechanisms by which this heritable priming occurs are largely unknown. Here we report that the soil bacteria Pseudomonas vranovensis is a natural pathogen of the nematode Caenorhabditis elegans and that parental exposure of animals to P. vranovensis promotes offspring resistance to infection. Furthermore, we demonstrate a transgenerational enhancement of progeny survival when three consecutive generations of animals are exposed to P. vranovensis. By investigating the mechanisms by which animals heritably adapt to P. vranovensis infection, we found that parental infection by P. vranovensis results in increased expression of the cysteine synthases CYSL-1 and CYSL-2 and the regulator of hypoxia inducible factor RHY-1 in progeny and that these three genes are required for adaptation to P. vranovensis. To our knowledge, these observations represent the largest heritable increase in offspring survival in response to a pathogen infection reported in any organism to date and establish a new CYSL-1, CYSL-2, and RHY-1 dependent mechanism by which animals adapt to infection.
0

De novogenome sequence assembly of the RNAi-tractable endosymbiosis model systemParamecium bursaria186b reveals factors shaping intron repertoire

Guy Leonard et al.Aug 9, 2024
How two species engage in stable endosymbiosis is a biological quandary. The study of facultative endosymbiotic interactions has emerged as a useful approach to understand how endosymbiotic functions can arise. The ciliate protist Paramecium bursaria hosts green algae of the order Chlorellales in a facultative photo-endosymbiosis. We have recently reported RNAi as a tool for understanding gene function in Paramecium bursaria 186b, CCAP strain 1660/18 [1]. To complement this work, here we report a highly complete host genome and trans criptome sequence dataset, using both Illumina and PacBio sequencing methods to aid genome analysis and to enable the design of RNAi experiments. Our analyses demonstrate Paramecium bursaria , like other ciliates such as diverse species of Paramecia , possess numerous tiny introns. These data, combined with the alternative genetic code common to ciliates, makes gene identification and annotation challenging. To explore intron evolutionary dynamics further we show that alternative splicing leading to intron retention occurs at a higher frequency among the smaller number of longer introns, identifying a source of selection against longer introns. These data will aid the investigation of genome evolution in the Paramecia and provide additional source data for the exploration of endosymbiotic functions.
1

ZFP57 is a regulator of postnatal growth and life-long health

Geula Hanin et al.Aug 27, 2023
Abstract Early-life factors, including nutrition, shape long-term health outcomes. Despite the essential role of lactation in maternal nutritional support, the influence of epigenetic factors on lactation and postnatal growth remains poorly understood. Zinc-finger protein 57 (ZFP57), is an epigenetic regulator of genomic imprinting, a process that directs gene expression based on parental origin, playing a vital role in mammalian prenatal growth. Here, we identify a novel function of ZFP57 in regulating the mammary gland, where it serves as a key modulator of postnatal resource control, independently of imprinted genes. ZFP57 influences multiple aspects of mammary gland function, including ductal branching and cellular homeostasis. Its absence leads to significant differential gene expression, related to alveologenesis, lactogenesis and milk synthesis, associated with delayed lactation and altered milk composition. This results in life-long impacts on offspring including the development of metabolic syndrome. Cross-fostering reveals intricate dynamics between mother and offspring during lactation. Pups raised by a dam of a different genotype than their birth mother exhibit exacerbated metabolic features in adulthood, providing additional insight into the programming of offspring long-term health by maternal context. This study deepens our understanding of the interplay between epigenetic factors, lactation, and postnatal resource control and identifies ZFP57 as a major regulator of both pre and postnatal resource control in mammals.