A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
NB
Nadia Boufaied
Author with expertise in Role of Long Noncoding RNAs in Cancer and Development
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
131
h-index:
10
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets

Xintao Qiu et al.Apr 24, 2021
ABSTRACT c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Importantly, analyses of clinical specimens revealed that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq revealed an increased RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes. STATEMENT OF SIGNIFICANCE AR and MYC are key to prostate cancer etiology but our current understanding of their interplay is scarce. Here we show that the oncogenic transcription factor MYC can pause the transcriptional program of the master transcription factor in prostate cancer, AR, while turning on its own, even more lethal program.
14
Citation2
0
Save
0

Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer

Nadia Boufaied et al.Jun 4, 2024
Abstract Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC–driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. Significance: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742
0
Citation2
0
Save
1

SOCS3-mediated activation of p53-p21-NRF2 axis and cellular adaptation to oxidative stress in SOCS1-deficient hepatocellular carcinoma

Md Khan et al.Oct 21, 2021
Abstract SOCS1 and SOCS3 genes, frequently repressed in hepatocellular carcinoma (HCC), function as tumor suppressors in hepatocytes. However, TCGA transcriptomic data revealed that SOCS1-low/SOCS3-high specimens displayed more aggressive HCC than SOCS1-low/SOCS3-low cases. We show that hepatocyte-specific Socs1- deficient livers upregulate Socs3 expression following genotoxic stress. Whereas deletion of Socs1 or Socs3 increased HCC susceptibility, ablation of both genes attenuated HCC growth. SOCS3 promotes p53 activation in SOCS1-deficient livers, leading to increased expression of CDKN1A (p21 WAF1/CIP1 ), which coincides with elevated expression and transcriptional activity of NRF2. Deleting Cdkn1a in SOCS1-deficient livers diminished NRF2 activation, oxidative stress and HCC progression. Elevated CDKN1A expression and enrichment of antioxidant response genes also characterized SOCS1-low/SOCS3-high HCC. SOCS1 expression in HCC cell lines reduced oxidative stress, p21 expression and NRF2 activation. Our findings demonstrate that SOCS1 controls the oncogenic potential of SOCS3-driven p53-p21-NRF2 axis and suggest that NRF2-mediated antioxidant response represents a drug target in SOCS1-deficient HCC.