JB
José Botezelli
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
466
h-index:
20
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptomic analysis of human and mouse muscle during hyperinsulinemia demonstrates insulin receptor downregulation as a mechanism for insulin resistance

Haoning Cen et al.Feb 21, 2019
Abstract Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have suggested that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. To study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 hours, followed by 6 hours of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin signaling, FOXO signaling, and glucose metabolism pathways indicative of ‘hyperinsulinemia’ and ‘starvation’ programs. We observed that hyperinsulinemia led to a substantial reduction in insulin receptor ( Insr) gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo . Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with insulin receptor ( INSR ) mRNA in skeletal muscle. Bioinformatic modeling combined with RNAi, identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies novel mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.
0
Citation3
0
Save
98

Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance

Søs Skovsø et al.Oct 15, 2020
Abstract Insulin receptor (Insr) protein can be found at higher levels in pancreatic β-cells than in most other tissues, but the consequences of β-cell insulin resistance remain enigmatic. Ins1 cre allele was used to delete Insr specifically in β-cells of both female and male mice. Experimental mice were compared to Ins1 cre -containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined β-cells revealed transcriptomic consequences of Insr loss, which differed between female and male mice. Action potential and calcium oscillation frequencies were increased in Insr knockout β- cells from female, but not male mice, whereas only male β Insr KO mice had reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female β Insr KO and β Insr HET mice exhibited elevated insulin release in perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr did not alter β-cell area up to 9 months of age, nor did it impair hyperglycemia-induced proliferation. Based on our data, we adapted a mathematical model to include β-cell insulin resistance, which predicted that β-cell Insr knockout would improve glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance was significantly improved in female β Insr KO and β Insr HET mice when compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We did not observe improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of β-cell specific insulin resistance. The propensity for hyperinsulinemia was associated with mildly reduced fasting glucose and increased body weight. We further validated our main in vivo findings using the Ins1 -CreERT transgenic line and found that male mice had improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that loss of β-cell Insr contributes to glucose-induced hyperinsulinemia, thereby improving glucose homeostasis in otherwise insulin sensitive dietary and age contexts.
98
Citation3
0
Save
0

Adipose depot-specific upregulation of Ucp1 or mitochondrial oxidative complex proteins are early consequences of genetic insulin reduction in mice

José Botezelli et al.Apr 1, 2020
Hyperinsulinemia plays a causal role in adipose tissue expansion. Mice with reduced insulin have increased energy expenditure, but the mechanisms remained unclear. Here we investigated the effects of genetically reducing insulin production on uncoupling and oxidative mitochondrial proteins in liver, skeletal muscle, white adipose tissue (WAT), and brown adipose tissue (BAT). Male Ins1 +/+ or Ins1 +/- littermates were fed either a low-fat diet (LFD) or a high-fat diet (HFD) for 4 weeks, starting at 8 weeks of age. As expected, HFD increased fasting hyperinsulinemia, and Ins1 +/- mice had significantly lower circulating insulin compared with Ins1 +/+ littermates. Fasting glucose and body weight were not different between genotypes. We did not observe significant differences in liver in skeletal muscle. In mesenteric WAT, Ins1 +/- mice had reduced Ndufb8 and Sdhb. Ucp1 was increased in the context of the HFD, and HFD alone had a dramatic inhibitory effect on Pparg abundance. In inguinal WAT, Ins1 +/- mice exhibited significant increases in oxidative complex proteins, independent of diet, without affecting Ucp1, Pparg, or Prdm16:Pparg association. In BAT, lowered insulin increased Sdhb protein levels that had been reduced by HFD. Ucp1 protein, Prdm16:Pparg association, and Sirt3 abundance were all increased in the absence of diet-induced hyperinsulinemia. Our data show that reducing insulin upregulates oxidative proteins in inguinal WAT without affecting Ucp1, while in mesenteric WAT and BAT, reducing insulin upregulates Ucp1 in the context of HFD. Preventing hyperinsulinemia has early depot-specific effects on adipose tissue metabolism and help explain the increased energy expenditure previously reported in Ins1 +/- mice.