AK
Amelie Kraus
Author with expertise in Epidemiology and Treatment of Chagas Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
5
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Histone H2B.V demarcates strategic regions in the Trypanosoma cruzi genome, associates with a bromodomain factor and affects parasite differentiation and host cell invasion

Juliana Rosón et al.Jun 8, 2021
+11
H
M
J
Abstract Histone variants play a crucial role in chromatin structure organization and gene expression. Trypanosomatids have an unusual H2B variant (H2B.V) that is known to dimerize with the variant H2A.Z generating unstable nucleosomes. Previously, we found that H2B.V protein is enriched in nonreplicative life forms of Trypanosoma cruzi, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among parasite life forms. Here, we performed the first genome-wide profiling of histone localization in T. cruzi using replicative and nonreplicative life forms, and we found that H2B.V was preferentially located at the edges of divergent switch regions, which encompass putative transcriptional start regions; at some tDNA loci; and between the conserved and disrupted genome compartments, mainly at trans-sialidase, mucin and MASP genes. Remarkably, the chromatin of nonreplicative forms was depleted of H2B.V-enriched peaks in comparison to replicative forms. Interactome assays indicated that H2B.V associated specifically with H2A.Z, bromodomain factor 2, nucleolar proteins and a histone chaperone, among others. Parasites expressing reduced H2B.V levels were associated with higher rates of parasite differentiation and mammalian cell infectivity. Taken together, H2B.V demarcates critical genomic regions and associates with regulatory chromatin proteins, suggesting a scenario wherein local chromatin structures associated with parasite differentiation and invasion are regulated during the parasite life cycle. Author Summary Trypanosomatids have to adapt to different environmental conditions, changing their morphology, gene expression and metabolism. These organisms have many unique features in terms of gene expression regulation. The genomic organization includes polycistronic regions with the absence of well-defined transcription start sites. In T. brucei , histone variants mark the start and ending sites of transcription; however, little is known about whether these proteins change their genome location, expression levels and interactors along life forms and what the impact is of these changes on parasite differentiation and infection. In T. cruzi, the causative agent of Chagas disease, we previously found that the histone variant of H2B is enriched in nonreplicative and infective forms, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among these life forms. Here, we aimed to go one step further and performed the first histone ChIP-seq analysis in T. cruzi , in which we found that H2B.V was enriched at divergent strand switch regions, some tDNA loci and other critical genomic regions associated with T. cruzi genome compartments. We found that H2B.V interacts with a bromodomain factor, suggesting an intricate network involving chromatin acetylation around H2B.V enriched sites. Moreover, parasites expressing reduced H2B.V levels were associated with higher rates of differentiation and mammalian cell infectivity.
16
Citation5
0
Save
0

Efficient and specific oligo-based depletion of rRNA

Amelie Kraus et al.Mar 26, 2019
T
B
A
In most organisms, ribosomal RNA (rRNA) contributes to >85% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA or other highly abundant transcripts is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available.