RG
Ryan Greenway
Author with expertise in Metabolic Theory of Ecology and Climate Change Impacts
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
7
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Integrative analyses of convergent adaptation in sympatric extremophile fishes

Ryan Greenway et al.Jun 28, 2021
Summary The evolution of independent lineages along replicated environmental gradients frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H 2 S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H 2 S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H 2 S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogenous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H 2 S tolerance may involve substantial genetic redundancy, with non-convergent lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
19
Citation4
0
Save
17

Ecology drives the degree of convergence in the gene expression of extremophile fishes

Michael Tobler et al.Dec 14, 2021
Abstract Convergent evolution, where independent lineages evolve similar traits when adapting to similar habitats, is a common phenomenon and testament to the repeatability of evolutionary processes. Still, non-convergence is also common, and a major question is whether apparently idiosyncratic, lineage-specific evolutionary changes are reflective of chance events inherent to evolutionary processes, or whether they are also influenced by deterministic genetic or ecological factors. To address this question, we quantified the degree of convergence in genome-wide patterns of gene expression across lineages of livebearing fishes (family Poeciliidae) that span 40 million years of evolution and have colonized extreme environments in the form of toxic, hydrogen-sulfide-rich springs. We specifically asked whether the degree of convergence across lineage pairs was related to their phylogenetic relatedness or the ecological similarity of the habitats they inhabit. Using phylogenetic comparative analyses, we showed that the degree of convergence was highly variable across lineage pairs residing in sulfide springs. While closely related lineages did not exhibit higher degrees of convergence than distantly related ones, we uncovered a strong relationship between degree of convergence and ecological similarity. Our results indicate that variation in the degree of convergence is not merely noise associated with evolutionary contingency. Rather, cryptic environmental variation that is frequently ignored when we employ reductionist approaches can significantly contribute to adaptive evolution. This study highlights the importance of multivariate approaches that capture the complexities of both selective regimes and organismal design when assessing the roles of determinism and contingency in evolution. Significance Statement When different species adapt to similar environmental conditions, we frequently observe a mix between shared (convergent) and lineage-specific (nonconvergent) evolutionary changes. Shared changes provide evidence for the repeatability and predictability of evolution. However, it remains unclear whether lineage-specific changes are caused by random forces that limit the predictability of evolution, or whether they reflect deterministic processes shaped by unidentified genetic and environmental factors. By analyzing patterns of gene expression across fishes in extreme environments, we show that the degree of convergence between lineages is related to ecology, indicating that lineage-specific evolutionary changes are not just noise caused by random processes. Thus, acknowledging the complexity of nature in empirical research is critical if we want to predict evolution.
17
Citation3
0
Save
0

Evolutionary Rate Shifts in Coding and Regulatory Regions Underpin Repeated Adaptation to Sulfidic Streams in Poeciliid Fishes

Rishi De‐Kayne et al.May 1, 2024
Adaptation to extreme environments often involves the evolution of dramatic physiological changes. To better understand how organisms evolve these complex phenotypic changes, the repeatability and predictability of evolution, and possible constraints on adapting to an extreme environment, it is important to understand how adaptive variation has evolved. Poeciliid fishes represent a particularly fruitful study system for investigations of adaptation to extreme environments due to their repeated colonization of toxic hydrogen sulfide-rich springs across multiple species within the clade. Previous investigations have highlighted changes in the physiology and gene expression in specific species that are thought to facilitate adaptation to hydrogen sulfide-rich springs. However, the presence of adaptive nucleotide variation in coding and regulatory regions and the degree to which convergent evolution has shaped the genomic regions underpinning sulfide tolerance across taxa are unknown. By sampling across seven independent lineages in which nonsulfidic lineages have colonized and adapted to sulfide springs, we reveal signatures of shared evolutionary rate shifts across the genome. We found evidence of genes, promoters, and putative enhancer regions associated with both increased and decreased convergent evolutionary rate shifts in hydrogen sulfide-adapted lineages. Our analysis highlights convergent evolutionary rate shifts in sulfidic lineages associated with the modulation of endogenous hydrogen sulfide production and hydrogen sulfide detoxification. We also found that regions with shifted evolutionary rates in sulfide spring fishes more often exhibited convergent shifts in either the coding region or the regulatory sequence of a given gene, rather than both.
0

Gene expression signatures between Limia perugiae (Poeciliidae) populations from freshwater and hypersaline habitats, with comparisons to other teleosts

Elizabeth Wilson et al.Dec 5, 2024
Salinity gradients act as strong environmental barriers that limit the distribution of aquatic organisms. Changes in gene expression associated with transitions between freshwater and saltwater environments can provide insights into organismal responses to variation in salinity. We used RNA-sequencing (RNA-seq) to investigate genome-wide variation in gene expression between a hypersaline population and a freshwater population of the livebearing fish species Limia perugiae (Poeciliidae). Our analyses of gill gene expression revealed potential molecular mechanisms underlying salinity tolerance in this species, including the enrichment of genes involved in ion transport, maintenance of chemical homeostasis, and cell signaling in the hypersaline population. We also found differences in gene expression patterns associated with cell-cycle and protein-folding processes between the hypersaline and freshwater L . perugiae . Bidirectional freshwater-saltwater transitions have occurred repeatedly during the diversification of fishes, allowing for broad-scale examination of repeatable patterns in evolution. Therefore, we compared transcriptomic variation in L . perugiae with other teleosts that have made freshwater-saltwater transitions to test for convergence in gene expression. Among the four distantly related population pairs from high- and low-salinity environments that we included in our analysis, we found only ten shared differentially expressed genes, indicating little evidence for convergence. However, we found that differentially expressed genes shared among three or more lineages were functionally enriched for ion transport and immune functioning. Overall, our results—in conjunction with other recent studies—suggest that different genes are involved in salinity transitions across disparate lineages of teleost fishes.
0

Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments

Ryan Greenway et al.Feb 25, 2020
Extreme environments test the limits of life; yet, some organisms thrive in harsh conditions. Extremophile lineages inspire questions about how organisms can tolerate physiochemical stressors and whether the repeated colonization of extreme environments is facilitated by predictable and repeatable evolutionary innovations. We identified the mechanistic basis underlying convergent evolution of tolerance to hydrogen sulfide (H2S), a toxicant that impairs mitochondrial function, across evolutionarily independent lineages of a fish (Poecilia mexicana, Poeciliidae) from H2S-rich springs. Using comparative biochemical and physiological analyses, we found that mitochondrial function is maintained in the presence of H2S in sulfide spring P. mexicana, but not ancestral lineages from nonsulfidic habitats, due to convergent adaptations in the primary toxicity target and a major detoxification enzyme. Genome-wide local ancestry analyses indicated that convergent evolution of increased H2S tolerance in different populations is likely caused by a combination of selection on standing genetic variation and de novo mutations. At a macroevolutionary scale, H2S tolerance in 10 independent lineages of sulfide spring fishes across multiple genera of Poeciliidae is correlated with the convergent modification and expression changes of genes associated with H2S toxicity and detoxification. Our results demonstrate that the modification of highly conserved physiological pathways associated with essential mitochondrial processes mediates tolerance to physiochemical stress. In addition, the same pathways, genes, and in some instances codons are implicated in H2S adaptation in lineages that span 40 million years of evolution.### Competing Interest StatementThe authors have declared no competing interest.
0

Gene expression signatures of salinity transitions inLimia perugiae(Poeciliidae), with comparisons to other teleosts

Elizabeth Wilson et al.Dec 23, 2023
Abstract Salinity gradients act as strong environmental barriers that limit the distribution of aquatic organisms. Changes in gene expression associated with transitions between freshwater and saltwater environments can provide insight into organismal responses to variation in salinity. We used RNA-sequencing (RNA-seq) to investigate genome-wide variation in gene expression between a hypersaline population and a freshwater population of the livebearing fish species Limia perugiae (Poeciliidae). Our analyses of gill gene expression revealed potential molecular mechanisms underlying salinity tolerance in this species, including the enrichment of genes involved in ion transport, maintenance of chemical homeostasis, and cell signaling in the hypersaline population. We also found differences in gene expression patterns associated with cell cycle and protein folding processes between the hypersaline and freshwater L. perugiae . Bidirectional freshwater-saltwater transitions have occurred repeatedly during the diversification of fishes, allowing for broad-scale examination of repeatable patterns in evolution. We compared transcriptomic variation in L. perugiae with other teleosts that have made freshwater-saltwater transitions to test for convergence in gene expression. Among the four distantly related population pairs from high- and low-salinity environments that we included in our analysis, we found only ten shared differentially expressed genes, indicating little evidence for convergence. However, we found that differentially expressed genes shared among three or more lineages were functionally enriched for ion transport and immune functioning. Overall, our results—in conjunction with other recent studies— suggest that different genes are involved in salinity transitions across disparate lineages of teleost fishes.