JW
John Wang
Author with expertise in Molecular Mechanisms of Photosynthesis and Photoprotection
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
4
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2

Liangyu Zhang et al.Jun 21, 2021
Abstract Meiotic chromosome segregation relies on synapsis and crossover recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In diverse species, failures in chromosome synapsis can trigger a cell cycle delay and/or lead to apoptosis. How this key step in “homolog engagement” is sensed and transduced by meiotic cells is unknown. Here we report that in C. elegans , recruitment of the Polo-like kinase PLK-2 to the synaptonemal complex triggers phosphorylation and inactivation of CHK-2, an early meiotic kinase required for pairing, synapsis, and double-strand break induction. Inactivation of CHK-2 ends double-strand break formation and promotes crossover designation and cell cycle progression. These findings illuminate how meiotic cells ensure crossover formation and accurate chromosome segregation. Summary Accurate chromosome segregation during meiosis requires crossovers between each pair of homologs. Zhang et al . show that meiotic progression in C. elegans involves inactivation of CHK-2 by PLK-2 in response to synapsis and formation of crossover precursors on all chromosomes.
20
Citation3
0
Save
1

A cooperative network at the nuclear envelope counteracts LINC-mediated forces during oogenesis in C. elegans

Chenshu Liu et al.Aug 13, 2021
ABSTRACT Oogenesis involves meiosis and oocyte maturation. Both processes rely on mechanical forces (Lee et al., 2015; Nagamatsu et al., 2019; Rog and Dernburg, 2015; Sato et al., 2009; Tsatskis et al., 2020; Wynne et al., 2012), which can be transduced from the cytoskeleton to the nuclear envelope (NE) through linker of nucleoskeleton and cytoskeleton (LINC) complexes (Burke, 2018; Chang et al., 2015; Fan et al., 2020; Link et al., 2014). Gametes must protect their genomes from damage in this mechanically stressful environment. In C. elegans, oocyte nuclei lacking the single lamin protein LMN-1 are vulnerable to nuclear collapse. Here we deploy the auxin-inducible degradation system to investigate the balance of forces that drive this collapse and protect oocyte nuclei. We find that nuclear collapse is not a consequence of apoptosis. It is promoted by dynein and a LINC complex comprised of SUN-1 and ZYG-12, which assumes polarized distribution at the NE in response to dynein-mediated forces. We also show that the lamin meshwork works in parallel with other inner nuclear membrane (INM) proteins to counteract mechanical stress at the NE during oogenesis. We speculate that a similar network may protect oocyte integrity during the long arrest period in mammals.
1
Citation1
0
Save