PG
Panagiotis Galanos
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
270
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
21

Genomic instability is an early event driving chromatin reorganization and escape from oncogene-induced senescence

Christos Zampetidis et al.Dec 20, 2020
SUMMARY Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not timely removed via immune surveillance, senescent cells will also present a detrimental side. Although this has mostly been attributed to the senescence-associated-secretory-phenotype (SASP) of these cells, we recently proposed that “escape” from the senescent state represents another unfavorable outcome. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion, which harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and for driving cell cycle re-entry and malignant transformation. In summary, we now provide strong evidence in support of genomic instability underlying “escape” from oncogene-induced senescence. HIGHLIGHTS Oncogene driven error-prone repair produces early genetic lesions allowing escape from senescence Cells escaping oncogene-induced senescence display mutational signatures observed in cancer patients A single recurrent inversion harboring a circadian TF gene suffices for bypassing oncogene-induced senescence Chromatin loop and compartment remodeling support the “escape” transcriptional program
21
Citation2
0
Save
0

Mutational signatures reveal the role of RAD52 in p53-independent p21 driven genomic instability

Panagiotis Galanos et al.Sep 28, 2017
Background: Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential to design appropriate therapeutic strategies. In a recent study we reported an unexpected oncogenic property of p21WAF1/Cip1 showing that its chronic expression, in a p53-deficient environment, causes genomic instability by deregulating the replication licensing machinery. Results: Extending on this work we now demonstrate that p21WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low and high fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we found at the mechanistic level that the DSBs were repaired by Rad52-dependent Break-Induced Replication (BIR) and Single-Strand Annealing (SSA). Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route was deficient. Surprisingly, Rad52 was activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Conclusions: Our results signify the importance of mutational signatures as guides to disclose the "repair history" leading to genomic instability. In this vein, following this approach we unveiled how chronic p21WAF1/Cip1 expression rewires the repair process, identifying Rad52 as a source of genomic instability and a candidate therapeutic target.