PJ
Patrick Jendritza
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
85
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Visual neuroscience methods for marmosets: efficient receptive field mapping and head-free eye tracking

Patrick Jendritza et al.Oct 30, 2020
The marmoset has emerged as a promising primate model system, in particular for visual neuroscience. Many common experimental paradigms rely on head fixation and an extended period of eye fixation during the presentation of salient visual stimuli. Both of these behavioral requirements can be challenging for marmosets. Here, we present two methodological developments, each addressing one of these difficulties. First, we show that it is possible to use a standard eye tracking system without head fixation to assess visual behavior in the marmoset. Eye tracking quality from head-free animals is sufficient to obtain precise psychometric functions from a visual acuity task. Secondly, we introduce a novel method for efficient receptive field mapping that does not rely on moving stimuli but uses fast flashing annuli and wedges. We present data recorded during head-fixation in areas V1 and V6 and show that receptive field locations are readily obtained within a short period of recording time. Thus, the methodological advancements presented in this work will contribute to establish the marmoset as a valuable model in neuroscience.
1

Gamma-band resonance of visual cortex to optogenetic stimulation

Jianguang Ni et al.May 8, 2017
Abstract Activated visual cortex typically engages in neuronal synchronization in the gamma-frequency band (30-90 Hz). Gamma-band synchronization is related to cognitive functioning, and its mechanisms have been extensively investigated, predominantly through in-vitro studies. To further elucidate its mechanisms in-vivo, we performed simultaneous optogenetic stimulation and electrophysiological recordings of visual cortical areas 17 and 21a in the anesthetized cat. Viral transfection with AAV1 or AAV9 under a CamKIIα promoter led to robust Channelrhodopsin-2 (ChR2) expression. Immunohistochemical analysis showed that all ChR2-expressing neurons were negative for Parvalbumin, consistent with predominant or exclusive expression in excitatory neurons. Optogenetic stimulation used primarily surface illumination directly above the transfected and recorded cells. Stimulation with constant light led to strong and sustained gamma-band synchronization with strength and bandwidth similar to visually induced gamma. Rhythmic stimulation with light-pulse trains or sinusoidal light modulation revealed strongest resonance for gamma-band frequencies. Gamma resonance was confirmed by optogenetic white-noise stimulation. White-noise stimulation allowed the quantification of the transfer function between the optogenetic stimulation and the local field potential response. This transfer function showed a dominant peak in the gamma band. Thus, we find that visual cortical circuits resonate most strongly to gamma-band components in their input. This resonance renders both the sensitivity to input, and the output of these circuits, selectively tuned to gamma. Significance Statement Activated groups of cortical neurons often display rhythmic synchronization in the gamma-frequency band (30-90 Hz). Gamma-band synchronization is particularly well studied in visual cortex. We used optogenetics to control visual cortex neurons with light. Different optogenetic stimulation protocols, using constant light, rhythmically modulated light or white-noise modulated light, all demonstrated that the investigated circuits predominantly resonate to stimulation in the gamma band. The observed gamma-band resonance renders visual cortical circuits most sensitive to gamma-rhythmic synaptic inputs. This in turn renders their spike output and the ensuing interareal synchronization gamma rhythmic. This work was supported by DFG (SPP 1665, FOR 1847, FR2557/5-1-CORNET to P.F.; EXC 1086, DI 1908/5-1, DI 1908/6-1 to I.D.), BMBF (01GQ1301 to I.D.), EU (HEALTH-F2-2008-200728-BrainSynch, FP7-604102-HBP, FP7-600730-Magnetrodes to P.F.; ERC Starting Grant OptoMotorPath to I.D.), a European Young Investigator Award to P.F., the FENS-Kavli Network of Excellence to I.D., National Institutes of Health (1U54MH091657-WU-Minn-Consortium-HCP to P.F.), the LOEWE program (NeFF to P.F. and I.D.). Present address of I.D.: Optophysiology, Bernstein Center and BrainLinks-BrainTools, University of Freiburg, Albertstrase 23, 79104 Freiburg, Germany. Author contributions J.N, C.M.L., T.W., P.F. designed research; J.N, C.M.L., T.W., P.J., I.D., P.F. performed experiments; J.N., C.M.L., T.W. analyzed data; J.N., P.F. wrote the paper.
0

In vivo magnetic recording of neuronal activity

Laure Caruso et al.Dec 9, 2016
SUMMARY Neuronal activity generates ionic flows and thereby both magnetic fields and electric potential differences, i.e. voltages. Voltage measurements are widely used, but suffer from isolating and smearing properties of tissue between source and sensor, are blind to ionic flow direction, and reflect the difference between two electrodes, complicating interpretation. Magnetic field measurements could overcome these limitations, but have been essentially limited to magnetoencephalography (MEG), using centimeter-sized, helium-cooled extracranial sensors. Here, we report on in vivo magnetic recordings of neuronal activity from visual cortex of cats with magnetrodes , specially developed needle-shaped probes carrying micron-sized, non-cooled magnetic sensors based on spin electronics. Event-related magnetic fields inside the neuropil were on the order of several nanoteslas, informing MEG source models and efforts for magnetic field measurements through MRI. Though the signal-to-noise ratio is still inferior to electrophysiology, this proof of concept demonstrates the potential to exploit the fundamental advantages of magnetophysiology. HIGHLIGHTS Spin-electronics based probes achieve local magnetic recordings inside the neuropil Magnetic field recordings were performed in vivo, in anesthetized cat visual cortex Event-related fields (ERFs) to visual stimuli were up to several nanoteslas in size ERFs could be detected after averaging less than 20 trials IN BRIEF Caruso et al. report in vivo, intra-cortical recordings of magnetic fields that reflect neuronal activity, using magnetrodes, i.e. micron size magnetic sensors based on spin electronics.
1

Multi-area recordings and optogenetics in the awake, behaving marmoset

Patrick Jendritza et al.Nov 2, 2021
Abstract The common marmoset has emerged as a key primate model in neuroscience. Marmosets are small in size, show great potential as transgenic models and exhibit complex behaviors. These advantages place the marmoset model in the critical gap between rodents and larger primates. Thus, it is necessary to develop technology that enables monitoring and manipulation of the neural circuits underlying the behavior of the marmoset. Here, we present a novel approach to record and optogenetically manipulate neural activity in the awake, behaving marmoset. Our design utilizes a light-weight, 3D printed titanium chamber that can house several high-density silicon probes for semi-chronic recordings, while enabling simultaneous optogenetic stimulation. Surgical procedures are streamlined via custom 3D printed guides and implantation holders. We demonstrate the application of our method by recording multi- and single-unit data from areas V1 and V6 with 192 channels simultaneously, and show for the first time that optogenetic activation of excitatory neurons in area V6 can influence behavior in a detection task. Together, the work presented here will support future studies investigating the neural basis of perception and behavior in the marmoset.
0

Acute Neuropixels recordings in the marmoset monkey

Nicholas Dotson et al.Dec 15, 2023
High-density linear probes, like Neuropixels, provide an unprecedented opportunity to understand how neural populations within specific laminar compartments contribute to behavior. Marmoset monkeys, unlike macaque monkeys, have a lissencephalic (smooth) cortex that enables recording perpendicular to the cortical surface, thus making them an ideal animal model for studying laminar computations. Here we present a method for acute Neuropixels recordings in the common marmoset (Callithrix jacchus). The approach replaces the native dura with an artificial silicon-based dura that grants visual access to the cortical surface, which is helpful in avoiding blood vessels, ensures perpendicular penetrations, and could be used in conjunction with optical imaging or optogenetic techniques. The chamber housing the artificial dura is simple to maintain with minimal risk of infection and could be combined with semi-chronic microdrives and wireless recording hardware. This technique enables repeated acute penetrations over a period of several months. With occasional removal of tissue growth on the pial surface, recordings can be performed for a year or more. The approach is fully compatible with Neuropixels probes, enabling the recording of hundreds of single neurons distributed throughout the cortical column.