Abstract Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein ArPEC25, which is secreted by the necrotroph Ascochyta rabiei , the causal agent of Ascochyta blight disease in chickpea ( Cicer arietinum ), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaβLIM1a. CaβLIM1a is a transcriptional regulator of CaPAL1 , which encodes phenylalanine ammonia lyase, the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaβLIM1a by interfering with its DNA binding ability. This results in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions. One-sentence summary The Ascochyta rabiei effector ArPEC25 enters the host nucleus and targets the transcription factor CaβLIM1a to manipulate phenylpropanoid pathway for negative modulation of chickpea lignin biosynthesis.