Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
SC
Scott Cooper
Author with expertise in Deep Brain Stimulation for Neurological Disorders
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
487
h-index:
27
/
i10-index:
50
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Patient-specific analysis of the volume of tissue activated during deep brain stimulation

Christopher Butson et al.Nov 20, 2006
Despite the clinical success of deep brain stimulation (DBS) for the treatment of movement disorders, many questions remain about its effects on the nervous system. This study presents a methodology to predict the volume of tissue activated (VTA) by DBS on a patient-specific basis. Our goals were to identify the intersection between the VTA and surrounding anatomical structures and to compare activation of these structures with clinical outcomes. The model system consisted of three fundamental components: (1) a 3D anatomical model of the subcortical nuclei and DBS electrode position in the brain, each derived from magnetic resonance imaging (MRI); (2) a finite element model of the DBS electrode and electric field transmitted to the brain, with tissue conductivity properties derived from diffusion tensor MRI; (3) VTA prediction derived from the response of myelinated axons to the applied electric field, which is a function of the stimulation parameters (contact, impedance, voltage, pulse width, frequency). We used this model system to analyze the effects of subthalamic nucleus (STN) DBS in a patient with Parkinson's disease. Quantitative measurements of bradykinesia, rigidity, and corticospinal tract (CST) motor thresholds were evaluated over a range of stimulation parameter settings. Our model predictions showed good agreement with CST thresholds. Additionally, stimulation through electrode contacts that improved bradykinesia and rigidity generated VTAs that overlapped the zona incerta/fields of Forel (ZI/H2). Application of DBS technology to various neurological disorders has preceded scientific characterization of the volume of tissue directly affected by the stimulation. Synergistic integration of clinical analysis, neuroimaging, neuroanatomy, and neurostimulation modeling provides an opportunity to address wide ranging questions on the factors linked with the therapeutic benefits and side effects of DBS.
4

Parkinsonian gait effects with DBS are associated with pallido-peduncular axis activation

Mojgan Goftari et al.Oct 15, 2021
Abstract Background Deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) often shows variable outcomes on treating gait dysfunction in Parkinson’s disease (PD). Such variability may stem from which specific neuronal pathways are modulated by DBS and the extent to which those pathways are modulated relative to one another. Objective Leveraging ultra-high-field (7T) imaging data and subject-specific computational models, this study investigated how activation of seven distinct pathways in and around STN, including the pallidopeduncular and pedunculopallidal pathways, affect step length at clinically-optimized STN-DBS settings. Methods Personalized computational models were developed for 10 subjects with a clinical diagnosis of PD and with bilateral STN-DBS implants. Results The subject-specific pathway activation models showed a significant positive association between activation of the pedunculopallidal pathway and increased step length, and negative association on step length with pallidopeduncular pathway and hyperdirect pathway activation. Conclusions The STN region includes multiple pathways, including fibers of passage to and from the mesencephalic locomotor area. Future clinical optimization of STN-DBS should consider these fibers of passage in the context of treating parkinsonian gait.
4
Citation4
0
Save
0

Neural pathways associated with reduced rigidity during pallidal deep brain stimulation for Parkinson's disease

Emily Lecy et al.Aug 7, 2024
Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) can markedly reduce muscle rigidity in people with Parkinson's disease (PD); however, the mechanisms mediating this effect are poorly understood. Computational modeling of DBS provides a method to estimate the relative contributions of neural pathway activations to changes in outcomes. In this study, we generated patient-specific biophysical models of GPi DBS (derived from individual 7T MRI) - including pallidal efferent, putamenal efferent and internal capsule pathways - to investigate how activation of neural pathways contributed to changes in forearm rigidity in PD. Ten individuals (17 arms) were tested off medication under four conditions: off stimulation, on clinically optimized stimulation, and on stimulation specifically targeting the dorsal GPi or ventral GPi. Quantitative measures of forearm rigidity, with and without a contralateral activation maneuver, were obtained using a robotic manipulandum. Clinically optimized GPi DBS settings significantly reduced forearm rigidity (p < 0.001), which aligned with GPi efferent fiber activation. The model demonstrated that GPi efferent axons could be activated at any location along the GPi dorsal-ventral axis. These results provide evidence that rigidity reduction produced by GPi DBS is mediated by preferential activation of GPi efferents to the thalamus, likely leading to a reduction in excitability of the muscle stretch reflex via overdriving pallidofugal output.
13

High-frequency oscillations in the internal globus pallidus: a pathophysiological biomarker in Parkinson's disease?

Luke Johnson et al.Jun 16, 2020
Abstract Abnormal oscillatory neural activity in the basal ganglia is thought to play a pathophysiological role in Parkinson’s disease. Many patient studies have focused on beta frequency band (13-35 Hz) local field potential activity in the subthalamic nucleus, however increasing evidence points to alterations in neural oscillations in high frequency ranges (>100 Hz) having pathophysiological relevance. Prior studies have found that power in subthalamic high frequency oscillations (HFOs) is positively correlated with dopamine tone and increased during voluntary movements, implicating these brain rhythms in normal basal ganglia function. Contrary to this idea, in the current study we present a combination of clinical and preclinical data that support the hypothesis that HFOs in the internal globus pallidus (GPi) are a pathophysiological feature of Parkinson’s disease. Spontaneous and movement-related pallidal field potentials were recorded from deep brain stimulation (DBS) leads targeting the GPi in five externalized Parkinson’s disease patients, on and off dopaminergic medication. We identified a prominent oscillatory peak centered at 200-300 Hz in the off-medication rest recordings in all patients. High frequency power increased during movement, and the magnitude of modulation was negatively correlated with bradykinesia. Moreover, high frequency oscillations were significantly attenuated in the on-medication condition, suggesting they are a feature of the parkinsonian condition. To further confirm that GPi high frequency oscillations are characteristic of dopamine depletion, we also collected field potentials from DBS leads chronically implanted in three rhesus monkeys before and after the induction of parkinsonism with the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP). High frequency oscillations and their modulation during movement were not prominent in the normal condition but emerged in the parkinsonian condition in the monkey model. These data provide the first evidence demonstrating that exaggerated, movement-modulated high frequency oscillations in the internal globus pallidus are a pathophysiological feature of Parkinson’s disease, and motivate additional investigations into the functional roles of high frequency neural oscillations across the basal ganglia-thalamocortical motor circuit and their relationship to motor control in normal and diseased states. These findings also provide rationale for further exploration of these signals for electrophysiological biomarker-based device programming and stimulation strategies in patients receiving deep brain stimulation therapy.