CK
Caroline Kampmeyer
Author with expertise in Molecular Chaperones in Protein Folding and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
5
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Disease-linked mutations trigger exposure of a protein quality control degron in the DHFR protein

Caroline Kampmeyer et al.Nov 4, 2021
Abstract Degrons are short stretches of amino acids or structural motifs that are embedded in proteins. They mediate recognition by E3 ubiquitin-protein ligases and thus confer protein degradation via the ubiquitin-proteasome system. Well-described degrons include the N-degrons, destruction boxes, and the PIP degrons, which mediate the controlled degradation of various proteins including signaling components and cell cycle regulators. In comparison, the so-called protein quality control (PQC) degrons that mediate the degradation of structurally destabilized or misfolded proteins are not well described. Here, we show that disease-linked DHFR missense variants are structurally destabilized and chaperone-dependent proteasome targets. We systematically mapped regions within DHFR to assess those that act as cytosolic PQC degrons in yeast cells. Two regions, DHFR-Deg13-36 (here Deg1) and DHFR-Deg61-84 (here Deg2), act as degrons and conferred degradation to unrelated fusion partners. The proteasomal turnover of Deg2 was dependent on the molecular chaperone Hsp70. Structural analyses by NMR and hydrogen/deuterium exchange revealed that Deg2 is buried in wild-type DHFR, but becomes transiently exposed in the disease-linked missense variants.
16
Citation3
0
Save
0

Evolutionarily conserved chaperone-mediated proteasomal degradation of a disease-linked aspartoacylase variant

Sarah Gersing et al.Sep 4, 2020
Abstract Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase ( ASPA ) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we examine the stability and degradation pathway of ASPA C152W. When we expressed ASPA C152W in Saccharomyces cerevisiae , we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution prevents ASPA from reaching its stable native conformation, presumably by impacting on de novo folding. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. We propose that Hsp110 is a potential therapeutic target for misfolding ASPA variants that trigger Canavan disease due to excessive degradation.
0
Citation1
0
Save
1

Lysine deserts prevent adventitious ubiquitylation of ubiquitin-proteasome components

Caroline Kampmeyer et al.Dec 8, 2022
Abstract In terms of its relative frequency, lysine is a common amino acid in the human proteome. However, by bioinformatics we find hundreds of proteins that contain long and evolutionarily conserved stretches completely devoid of lysine residues. These so-called lysine deserts show a high prevalence in intrinsically disordered proteins with known or predicted functions within the ubiquitin-proteasome system (UPS), including many E3 ubiquitin-protein ligases and UBL domain proteasome substrate shuttles, such as BAG6, RAD23A, UBQLN1 and UBQLN2. We show that introduction of lysine residues into the deserts leads to a striking increase in ubiquitylation of some of these proteins. In case of BAG6, we show that ubiquitylation is catalyzed by the E3 RNF126, while RAD23A is ubiquitylated by E6AP. Despite the elevated ubiquitylation, mutant RAD23A appears stable, but displays a partial loss of function phenotype in fission yeast. In case of UBQLN1 and BAG6, introducing lysine leads to a reduced abundance due to proteasomal degradation of the proteins. For UBQLN1 we show that arginine residues within the lysine depleted region are critical for its ability to form cytosolic inclusions. We propose that selective pressure to avoid lysine residues may be a common evolutionary mechanism to prevent unwarranted ubiquitylation and/or perhaps other lysine post-translational modifications. This may be particularly relevant for UPS components as they closely and frequently encounter the ubiquitylation machinery and are thus more susceptible to non-specific ubiquitylation.
1
Citation1
0
Save
0

Mutations in a single signaling pathway allow growth on a different solvent than water

Caroline Kampmeyer et al.Jul 4, 2019
Since life is completely dependent on water, it is difficult to gauge the impact of solvent change. To analyze the role of water as a solvent in biology, we replaced water with heavy water (D2O), and investigated the biological effects by a wide range of techniques, using the fission yeast Schizosaccharomyces pombe as model organism. We show that high concentrations of D2O lead to altered glucose metabolism, growth retardation, and inhibition of meiosis. However, mitosis and overall cell viability were only slightly affected. After prolonged incubation in D2O, cells displayed gross morphological changes, thickened cell walls as well as aberrant septa and cytoskeletal organization. RNA sequencing revealed that D2O causes a strong downregulation of most tRNAs and triggers activation of the general stress response pathway. Genetic screens identified several D2O sensitive mutants, while mutants compromised in the cell integrity pathway, including the protein kinase genes pmk1 , mkh1 , pek1 and pck2 , that control cell wall biogenesis, were more tolerant to D2O. We speculate that D2O affects the phospholipid membrane or cell wall glycans causing an activation of the cell integrity pathway. In conclusion, the effects of solvent replacement are pleiotropic but the D2O-triggered activation of the cell integrity pathway and subsequent increased deposition of cell wall material and septation problems appear most critical for the cell growth defects.