Abstract Neutrophils are short-lived cells of the innate immune system that play numerous roles in defense against infection, regulation of immune responses, tissue damage and repair, autoimmunity, and other non-communicable diseases. Understanding neutrophil function at a mechanistic level has been hampered by the difficulty of working with primary neutrophils, which die rapidly upon isolation, and the relative paucity of neutrophil cell lines. Murine neutrophil progenitors that are immortalized with estrogen-regulated expression of Hoxb8 differentiate into neutrophils upon withdrawal of estrogen and facilitate the quantitative production of neutrophils in vitro . Here we report the creation of a Cas9 + ER-Hoxb8 neutrophil progenitor cell line that enables both forward and reverse genetic analysis of neutrophils for the first time. By editing progenitors via transduction with sgRNAs, and then withdrawing estrogen, Cas9 edited neutrophils are produced with high efficiency. Importantly, neutrophil differentiation of edited progenitors occurs both in vitro in cell culture and when transferred into murine recipients. To demonstrate the utility of Cas9 + ER-Hoxb8 progenitors for forward genetics, we performed a pooled CRISPR screen to identify factors required for survival during neutrophil differentiation. This screen identified hundreds of genes both negatively and positively selected under differentiation conditions. One of the top hits from this screen was Cebpe , a transcription factor known to be required for neutrophil differentiation from pre-neutrophils to immature neutrophils. Using the progenitor cell line, we also confirmed that Cepbe is required for neutrophil differentiation in vivo , validating the utility of this cell line both for screening and for studying in vivo phenotypes. The genome-wide screen also identified all components of the WASH complex as being required for neutrophil differentiation, a finding that extends the known role of WASH in hematopoietic stem cell differentiation to later stages of neutrophil development. Taken together, we demonstrate that Cas9 + ER-Hoxb8 immortalized neutrophils can be used to study neutrophil function both in vitro and in vivo . This new resource will enable the analysis of the role of neutrophils in numerous disease states using genetics for the first time.