PD
Paul Dellorusso
Author with expertise in Multipotent Mesenchymal Stem Cells
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Maternal IL-10 restricts fetal emergency myelopoiesis

Amélie Collins et al.Sep 13, 2023
Neonates, in contrast to adults, are highly susceptible to inflammation and infection. Here we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPC) respond to inflammation, testing the hypothesis that deficits in engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that despite similar molecular wiring as adults, fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical EM transcriptional program. Moreover, we find that fetal HSPCs are capable of responding to EM-inducing inflammatory stimuli in vitro , but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero . Accordingly, we demonstrate that loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of premature parturition. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.The structure of the HSPC compartment is conserved from late fetal to adult life.Fetal HSPCs have diminished steady-state myeloid cell production compared to adult.Fetal HSPCs are restricted from engaging in emergency myelopoiesis by maternal IL-10.Restriction of emergency myelopoiesis may explain neutropenia in septic neonates.Fetal hematopoietic stem and progenitor cells are restricted from activating emergency myelopoiesis pathways by maternal IL-10, resulting in inadequate myeloid cell production in response to inflammatory challenges and contributing to neonatal neutropenia.
1

Stromal inflammation is a targetable driver of hematopoietic aging

Evgenia Verovskaya et al.Mar 9, 2021
Hematopoietic aging is marked by a loss of regenerative capacity and skewed differentiation from hematopoietic stem cells (HSC) leading to dysfunctional blood production. Signals from the bone marrow (BM) niche dynamically tailor hematopoiesis, but the effect of aging on the niche microenvironment and the contribution of the aging niche to blood aging still remains unclear. Here, we characterize the inflammatory milieu in the aged marrow cavity that drives both stromal and hematopoietic remodeling. We find decreased numbers and functionality of osteogenic mesenchymal stromal cells (MSC) at the endosteum and expansion of pro-inflammatory perisinusoidal MSCs with deterioration of sinusoidal endothelium in the central marrow, which together create a degraded and inflamed old niche. Molecular mapping at single cell resolution confirms disruption of cell identities and enrichment of inflammatory response genes in niche populations. Niche inflammation, in turn, drives chronic activation of emergency myelopoiesis pathways in old HSCs and multipotent progenitors (MPP), which promotes myeloid differentiation at the expense of lymphoid and erythroid commitment and hinders hematopoietic regeneration. Remarkably, niche deterioration, HSC dysfunction and defective hematopoietic regeneration, can be improved by blocking inflammatory IL-1 signaling. Our results demonstrate that targeting niche inflammation is a tractable strategy to restore blood production during aging.
6

Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells

Paul Dellorusso et al.Aug 19, 2023
Abstract Aging of the hematopoietic system promotes various blood, immune and systemic disorders and is largely driven by hematopoietic stem cell (HSC) dysfunction ( 1 ). Autophagy is central for the benefits associated with activation of longevity signaling programs ( 2 ), and for HSC function and response to nutrient stress ( 3,4 ). With age, a subset of HSCs increases autophagy flux and preserves some regenerative capacity, while the rest fail to engage autophagy and become metabolically overactivated and dysfunctional ( 4 ). However, the signals that promote autophagy in old HSCs and the mechanisms responsible for the increased regenerative potential of autophagy-activated old HSCs remain unknown. Here, we demonstrate that autophagy activation is an adaptive survival response to chronic inflammation in the aging bone marrow (BM) niche ( 5 ). We find that inflammation impairs glucose metabolism and suppresses glycolysis in aged HSCs through Socs3-mediated impairment of AKT/FoxO-dependent signaling. In this context, we show that inflammation-mediated autophagy engagement preserves functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we demonstrate that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glucose uptake and glycolytic flux and significantly improves old HSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset old HSC glycolytic and regenerative capacity. One-Sentence Summary Autophagy compensates for chronic inflammation-induced metabolic deregulation in old HSCs, and its transient modulation can reset old HSC glycolytic and regenerative capacity.