RW
Rui Wang‐Sattler
Author with expertise in Advances in Metabolomics Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
2,929
h-index:
45
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach

Anna Floegel et al.Oct 6, 2012
+15
Z
N
A
Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21–0.44], factor 2 3.82 [2.64–5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.
0

Novel biomarkers for pre‐diabetes identified by metabolomics

Rui Wang‐Sattler et al.Jan 1, 2012
+40
C
Z
R
Article25 September 2012Open Access Novel biomarkers for pre-diabetes identified by metabolomics Rui Wang-Sattler Corresponding Author Rui Wang-Sattler Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Zhonghao Yu Zhonghao Yu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Herder Christian Herder German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Ana C Messias Ana C Messias Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Anna Floegel Anna Floegel Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Ying He Ying He Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Katharina Heim Katharina Heim Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Monica Campillos Monica Campillos Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christina Holzapfel Christina Holzapfel Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany Search for more papers by this author Barbara Thorand Barbara Thorand Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Harald Grallert Harald Grallert Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Tao Xu Tao Xu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Erik Bader Erik Bader Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Huth Cornelia Huth Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Kirstin Mittelstrass Kirstin Mittelstrass Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Angela Döring Angela Döring Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christa Meisinger Christa Meisinger Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Gieger Christian Gieger Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Prehn Cornelia Prehn Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Werner Roemisch-Margl Werner Roemisch-Margl Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Maren Carstensen Maren Carstensen German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Lu Xie Lu Xie Shanghai Center for Bioinformation Technology, Shanghai, China Search for more papers by this author Hisami Yamanaka-Okumura Hisami Yamanaka-Okumura Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Search for more papers by this author Guihong Xing Guihong Xing Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China Search for more papers by this author Uta Ceglarek Uta Ceglarek Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Joachim Thiery Joachim Thiery Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Guido Giani Guido Giani German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Heiko Lickert Heiko Lickert Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Xu Lin Xu Lin Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Yixue Li Yixue Li Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Heiner Boeing Heiner Boeing Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Hans-Georg Joost Hans-Georg Joost Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Martin Hrabé de Angelis Martin Hrabé de Angelis Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Wolfgang Rathmann Wolfgang Rathmann German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Karsten Suhre Karsten Suhre Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar Search for more papers by this author Holger Prokisch Holger Prokisch Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Annette Peters Annette Peters Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Thomas Meitinger Thomas Meitinger Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany Search for more papers by this author Michael Roden Michael Roden German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Klinikum rechts der Isar, Technische Universität München, Munich, Germany Search for more papers by this author H-Erich Wichmann H-Erich Wichmann Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Search for more papers by this author Tobias Pischon Tobias Pischon Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany Search for more papers by this author Jerzy Adamski Jerzy Adamski Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Thomas Illig Thomas Illig Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Hannover Unified Biobank, Hannover Medical School, Hannover, Germany Search for more papers by this author Rui Wang-Sattler Corresponding Author Rui Wang-Sattler Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Zhonghao Yu Zhonghao Yu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Herder Christian Herder German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Ana C Messias Ana C Messias Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Anna Floegel Anna Floegel Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Ying He Ying He Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Katharina Heim Katharina Heim Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Monica Campillos Monica Campillos Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christina Holzapfel Christina Holzapfel Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany Search for more papers by this author Barbara Thorand Barbara Thorand Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Harald Grallert Harald Grallert Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Tao Xu Tao Xu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Erik Bader Erik Bader Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Huth Cornelia Huth Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Kirstin Mittelstrass Kirstin Mittelstrass Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Angela Döring Angela Döring Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christa Meisinger Christa Meisinger Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Gieger Christian Gieger Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Prehn Cornelia Prehn Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Werner Roemisch-Margl Werner Roemisch-Margl Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Maren Carstensen Maren Carstensen German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Lu Xie Lu Xie Shanghai Center for Bioinformation Technology, Shanghai, China Search for more papers by this author Hisami Yamanaka-Okumura Hisami Yamanaka-Okumura Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Search for more papers by this author Guihong Xing Guihong Xing Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China Search for more papers by this author Uta Ceglarek Uta Ceglarek Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Joachim Thiery Joachim Thiery Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Guido Giani Guido Giani German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Heiko Lickert Heiko Lickert Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Xu Lin Xu Lin Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Yixue Li Yixue Li Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Heiner Boeing Heiner Boeing Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Hans-Georg Joost Hans-Georg Joost Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Martin Hrabé de Angelis Martin Hrabé de Angelis Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Wolfgang Rathmann Wolfgang Rathmann German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Karsten Suhre Karsten Suhre Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar Search for more papers by this author Holger Prokisch Holger Prokisch Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Annette Peters Annette Peters Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Thomas Meitinger Thomas Meitinger Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany Search for more papers by this author Michael Roden Michael Roden German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Klinikum rechts der Isar, Technische Universität München, Munich, Germany Search for more papers by this author H-Erich Wichmann H-Erich Wichmann Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Search for more papers by this author Tobias Pischon Tobias Pischon Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany Search for more papers by this author Jerzy Adamski Jerzy Adamski Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Thomas Illig Thomas Illig Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Hannover Unified Biobank, Hannover Medical School, Hannover, Germany Search for more papers by this author Author Information Rui Wang-Sattler 1,‡, Zhonghao Yu1,‡, Christian Herder2,‡, Ana C Messias3,‡, Anna Floegel4, Ying He5,6, Katharina Heim7, Monica Campillos8, Christina Holzapfel1,9, Barbara Thorand10, Harald Grallert1, Tao Xu1, Erik Bader1, Cornelia Huth10, Kirstin Mittelstrass1, Angela Döring11, Christa Meisinger10, Christian Gieger12, Cornelia Prehn13, Werner Roemisch-Margl8, Maren Carstensen2, Lu Xie5, Hisami Yamanaka-Okumura14, Guihong Xing15, Uta Ceglarek16, Joachim Thiery16, Guido Giani17, Heiko Lickert18, Xu Lin19, Yixue Li5,6, Heiner Boeing4, Hans-Georg Joost4, Martin Hrabé de Angelis13,20, Wolfgang Rathmann17, Karsten Suhre8,21,22, Holger Prokisch7, Annette Peters10, Thomas Meitinger7,23, Michael Roden2,24, H-Erich Wichmann11,25, Tobias Pischon4,26, Jerzy Adamski13,20 and Thomas Illig1,27 1Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 2German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany 3Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany 4Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany 5Shanghai Center for Bioinformation Technology, Shanghai, China 6Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 7Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany 8Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany 9Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany 10Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany 11Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany 12Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 13Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany 14Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan 15Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China 16Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany 17German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany 18Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany 19Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 20Chair of Experimental Genetics, Technische Universität München, Munich, Germany 21Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany 22Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar 23Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany 24Klinikum rechts der Isar, Technische Universität München, Munich, Germany 25Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany 26Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany 27Hannover Unified Biobank, Hannover Medical School, Hannover, Germany ‡These authors contributed equally to this work *Corresponding author. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany. Tel.:+49 89 3187 3978; Fax:+49 89 3187 2428; E-mail: [email protected] Molecular Systems Biology (2012)8:615https://doi.org/10.1038/msb.2012.43 PDFDownload PDF of article text and main figures. Peer ReviewDownload a summary of the editorial decision process including editorial decision letters, reviewer comments and author responses to feedback. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info Type 2 diabetes (T2D) can be prevented in pre-diabetic individuals with impaired glucose tolerance (IGT). Here, we have used a metabolomics approach to identify candidate biomarkers of pre-diabetes. We quantified 140 metabolites for 4297 fasting serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort. Our study revealed significant metabolic variation in pre-diabetic individuals that are distinct from known diabetes risk indicators, such as glycosylated hemoglobin levels, fasting glucose and insulin. We identified three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine) that had significantly altered levels in IGT individuals as compared to those with normal glucose tolerance, with P-values ranging from 2.4 × 10−4 to 2.1 × 10−13. Lower levels of glycine and LPC were found to be predictors not only for IGT but also for T2D, and were independently confirmed in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. Using metabolite–protein network analysis, we identified seven T2D-related genes that are associated with these three IGT-specific metabolites by multiple interactions with four enzymes. The expression levels of these enzymes correlate with changes in the metabolite concentrations linked to diabetes. Our results may help developing novel strategies to prevent T2D. Synopsis A targeted metabolomics approach was used to identify candidate biomarkers of pre-diabetes. The relevance of the identified metabolites is further corroborated with a protein-metabolite interaction network and gene expression data. Three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine C2) were found with significantly altered levels in pre-diabetic individuals compared with normal controls. Lower levels of glycine and LPC (18:2) were found to predict risks for pre-diabetes and type 2 diabetes (T2D). Seven T2D-related genes (PPARG, TCF7L2, HNF1A, GCK, IGF1, IRS1 and IDE) are functionally associated with the three identified metabolites. The unique combination of methodologies, including prospective population-based and nested case–control, as well as cross-sectional studies, was essential for the identification of the reported biomarkers. Introduction Type 2 diabetes (T2D) is defined by increased blood glucose levels due to pancreatic β-cell dysfunction and insulin resistance without evidence for specific causes, such as autoimmune destruction of pancreatic β-cells (Krebs et al, 2002; Stumvoll et al, 2005; Muoio and Newgard, 2008). A state of pre-diabetes (i.e., impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT)) with only slightly elevated blood glucose levels may precede T2D for years (McGarry, 2002; Tabak et al, 2012). The development of diabetes in pre-diabetic individuals can be prevented or delayed by dietary changes and increased physical activity (Tuomilehto et al, 2001; Knowler et al, 2002). However, no specific biomarkers that enable prevention have been reported. Metabolomics studies allow metabolites involved in disease mechanisms to be discovered by monitoring metabolite level changes in predisposed individuals compared with healthy ones (Shaham et al, 2008; Newgard et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011; Rhee et al, 2011; Wang et al, 2011; Cheng et al, 2012; Goek et al, 2012). Altered metabolite levels may serve as diagnostic biomarkers and enable preventive action. Previous cross-sectional metabolomics studies of T2D were either based on small sample sizes (Shaham et al, 2008; Wopereis et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011) or did not consider the influence of common risk factors of T2D (Newgard et al, 2009). Recently, based on prospective nested case–control studies with relative large samples (Rhee et al, 2011; Wang et al, 2011), five branched-chain and aromatic amino acids were identified as predictors of T2D (Wang et al, 2011). Here, using various comprehensive large-scale approaches, we measured metabolite concentration profiles (Yu et al, 2012) in the population-based (Holle et al, 2005; Wichmann et al, 2005) Cooperative Health Research in the Region of Augsburg (KORA) baseline (survey 4 (S4)) and follow-up (F4) studies (Rathmann et al, 2009; Meisinger et al, 2010; Jourdan et al, 2012). The results of these cross-sectional and prospective studies allowed us to (i) reliably identify candidate biomarkers of pre-diabetes and (ii) build metabolite–protein networks to understand diabetes-related metabolic pathways. Results Study participants Individuals with known T2D were identified by physician-validated self-reporting (Rathmann et al, 2010) and excluded from our analysis, to avoid potential influence from anti-diabetic medication with non-fasting participants and individuals with missing values (Figure 1A). Based on both fasting and 2-h glucose values (i.e., 2 h post oral 75 g glucose load), individuals were defined according to the WHO diagnostic criteria to have normal glucose tolerance (NGT), isolated IFG (i-IFG), IGT or newly diagnosed T2D (dT2D) (WHO, 1999; Rathmann et al, 2009; Meisinger et al, 2010; Supplementary Table S1). The sample sets include 91 dT2D patients and 1206 individuals with non-T2D, including 866 participants with NGT, 102 with i-IFG and 238 with IGT, in the cross-sectional KORA S4 (Figure 1A; study characteristics are shown in Table I). Of the 1010 individuals in a fasting state who participated at baseline and follow-up surveys (Figure 1B, study characteristics of the KORA F4 survey are shown in Supplementary Table S2), 876 of them were non-diabetic at baseline. Out of these, about 10% developed T2D (i.e., 91 incident T2D) (Figure 1C). From the 641 individuals with NGT at baseline, 18% developed IGT (i.e., 118 incident IGT) 7 years later (Figure 1D). The study characteristics of the prospective KORA S4→F4 are shown in Table II. Figure 1.Population description. Metabolomics screens in the KORA cohort, at baseline S4 (A), overlapped between S4 and F4 (B) and prospective (C, D). Participant numbers are shown. Normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), impaired glucose tolerance (IGT), type 2 diabetes mellitus (T2D) and newly diagnosed T2D (dT2D). Non-T2D individuals include NGT, i-IFG and IGT participants. Download figure Download PowerPoint Table 1. Characteristics of the KORA S4 cross-sectional study sample Clinical and laboratory parameters NGT i-IFG IGT dT2D N 866 102 238 91 Age (years) 63.5±5.5 64.1±5.2 65.2±5.2 65.9±5.4 Sex (female) (%) 52.2 30.4 44.9 41.8 BMI (kg/m2) 27.7±4.1 29.2±4 29.6±4.1 30.2±3.9 Physical activity (% >1 h per week) 46.7 35.3 39.9 36.3 Alcohol intakea (%) 20.2 20.5 25.2 24.2 Current smoker (%) 14.8 10.8 10.9 23.1 Systolic BP (mm Hg) 131.7±18.9 138.9±17.9 140.7±19.8 146.8±21.5 HDL cholesterol (mg/dl) 60.5±16.4 55.7±15.9 55.7±15.1 50.0±15.8 LDL cholesterol (mg/dl) 154.5±39.8 152.1±37.7 155.2±38.6 146.1±44.6 Triglycerides (mg/dl) 120.7±68.3 145.0±96.0 146.6±80.0 170.6±107.1 HbA1c (%) 5.56±0.33 5.62±0.33 5.66±0.39 6.21±0.83 Fasting glucose (mg/dl) 95.6±7.1 114.2±3.7 104.5±9.7 133.2±31.7 2-h Glucose (mg/dl) 102.1±21.0 109.3±18.7 163.4±16.4 232.1±63.7 Fasting insulin (μU/ml) 10.48±7.28 16.26±9.67 13.92±9.53 17.70±12.61 NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose; IGT, impaired glucose tolerance; dT2D, newly diagnosed type 2 diabetes; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein. Percentages of individuals or means±s.d. are given for each variable and each group (NGT, i-IFG, IGT and dT2D). a ⩾20 g/day for women; ⩾40 g/day for men. Table 2. Characteristics of the KORA S4→F4 prospective study samples NGT at baseline (n=589) Non-T2D at baseline (n=876) Remained NGT at follow-up Developed IGT at follow-up Remained Non-T2D at follow-up Developed T2D at follow-up N 471 118 785 91 Age (years) 62.4±5.4 63.9±5.5 62.9±5.4 65.5±5.2 Sex (female) (%) 52.2 55.9 50.8 34.1 BMI (kg/m2) 27.2±3.8 28.2±3.9 27.9±4 30.2±3.6 Physical activity (% >1 h per week) 52.9 43.2 52.2 58.2 Alcohol intakea (%) 19.9 20.3 20.6 19.8 Smoker (%) 14.6 9.3 12.0 14.3 Systolic BP (mm Hg) 129.6±18.2 134.2±18.7 132.4±18.6 137.8±19 HDL cholesterol (mg/dl) 61.3±16.8 58.9±16.2 60.0±16.5 51.9±12.4 LDL cholesterol (mg/dl) 153.9±38.4 156.9±42.7 154.5±39.5 157.7±41.6 Triglycerides (mg/dl) 118.1±63.9 129.5±79.0 125.0±70.0 151.2±74.2 HbA1c (%) 5.54±0.33 5.59±0.34 5.6±0.3 5.8±0.4 Fasting glucose (mg/dl) 94.7±6.9 96.6±7.1 97.7±8.8 106.1±10.1 2-h Glucose (mg/dl) 98.2±20.5 109.9±16.8 109.3±28 145.9±32.3 Fasting insulin (μU/ml) 9.91±6.48 11
0
Citation642
0
Save
0

A genome-wide perspective of genetic variation in human metabolism

Thomas Illig et al.Dec 27, 2009
+15
G
C
T
Karsten Suhre and colleagues report a genome-wide association study to 163 metabolic traits in human serum. Serum metabolite concentrations provide a direct readout of biological processes in the human body, and they are associated with disorders such as cardiovascular and metabolic diseases. We present a genome-wide association study (GWAS) of 163 metabolic traits measured in human blood from 1,809 participants from the KORA population, with replication in 422 participants of the TwinsUK cohort. For eight out of nine replicated loci (FADS1, ELOVL2, ACADS, ACADM, ACADL, SPTLC3, ETFDH and SLC16A9), the genetic variant is located in or near genes encoding enzymes or solute carriers whose functions match the associating metabolic traits. In our study, the use of metabolite concentration ratios as proxies for enzymatic reaction rates reduced the variance and yielded robust statistical associations with P values ranging from 3 × 10−24 to 6.5 × 10−179. These loci explained 5.6%–36.3% of the observed variance in metabolite concentrations. For several loci, associations with clinically relevant parameters have been reported previously.
0
Citation630
0
Save
0

Differences between Human Plasma and Serum Metabolite Profiles

Zhonghao Yu et al.Jul 8, 2011
+19
P
Y
Z
Background Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized. Methodology/Principal Findings We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices. Conclusions/Significance Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection.
0

Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers

Kirstin Mittelstraß et al.Aug 11, 2011
+15
Z
J
K
Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8×10−4; Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8×10−10; Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation.
0
Citation349
0
Save
0

Single-cell RNA sequencing illuminates the ontogeny, conservation and diversification of cartilaginous and bony fish lymphocytes

Hongyan Wang et al.Sep 3, 2024
+28
Y
J
H
Elucidating cellular architecture and cell-type evolution across species is central to understanding immune system function and susceptibility to disease. Adaptive immunity is a shared trait of the common ancestor of cartilaginous and bony fishes. However, evolutionary features of lymphocytes in these two jawed vertebrates remain unclear. Here, we present a single-cell RNA sequencing atlas of immune cells from cartilaginous (white-spotted bamboo shark) and bony (zebrafish and Chinese tongue sole) fishes. Cross-species comparisons show that the same cell types across different species exhibit similar transcriptional profiles. In the bamboo shark, we identify a phagocytic B cell population expressing several pattern recognition receptors, as well as a T cell sub-cluster co-expressing both T and B cell markers. In contrast to a division by function in the bony fishes, we show close linkage and poor functional specialization among lymphocytes in the cartilaginous fish. Our cross-species single-cell comparison presents a resource for uncovering the origin and evolution of the gnathostome immune system.
0
Citation1
0
Save
0

Bidirectional modulation of TCA cycle metabolites and anaplerosis by metformin and its combination with SGLT2i

Makoto Harada et al.Jun 12, 2024
+25
M
J
M
Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans.
4

Missing view completion for multi-timepoints omics data via representation disentanglement and temporal knowledge transfer

Siyu Han et al.Jan 1, 2023
+20
M
S
S
Longitudinal multi-view omics data offer unique insights into the temporal dynamics of individual-level physiology that is instrumental to advancements in personalized healthcare. However, the common occurrence of incomplete view makes inference tasks difficult, and there is a lack of tailored methods for solving this critical issue. Here, we introduce LEOPARD, an approach specifically designed to complete missing views for multi-timepoint omics data. By disentangling longitudinal omics data into content and temporal representations, LEOPARD transfers temporal knowledge to omics-specific content to complete missing views. Compared to generic imputation methods, LEOPARD gives the most robust and reliable results across three longitudinal proteomics and metabolomics datasets. LEOPARD-imputed data also achieve the closest performance to observed data in our regression and classification analyses. Our work takes the first step towards a principled and generalized treatment of missing views in longitudinal omics data, enabling comprehensive exploration of temporal changes within omics data.
0

Network based conditional genome wide association analysis of human metabolomics

Yakov Tsepilov et al.Dec 27, 2016
+9
K
R
Y
Background: Genome-wide association studies (GWAS) have identified hundreds of loci influencing complex human traits, however, their biological mechanism of action remains mostly unknown. Recent accumulation of functional genomics (‘omics’) including metabolomics data opens up opportunities to provide a new insight into the functional role of specific changes in the genome. Functional genomic data are characterized by high dimensionality, presence of (strong) statistical dependencies between traits, and, potentially, complex genetic control. Therefore, analysis of such data asks for development of specific statistical genetic methods. Results: We propose a network-based, conditional approach to evaluate the impact of genetic variants on omics phenotypes (conditional GWAS, cGWAS). For each trait of interest, based on biological network, we select a set of other traits to be used as covariates in GWAS. The network could be reconstructed either from biological pathway databases or directly from the data. We evaluated our approach using data from a population-based KORA study (n=1,784, 1.7 M SNPs) with measured metabolomics data (151 metabolites) and demonstrated that our approach allows for identification of up to five additional loci not detected by conventional GWAS. We show that this gain in power is achieved through increased precision of genetic effect estimates, and in presence of specific ‘contra-intuitive’ pleiotropic scenarios (when genetic and environmental sources of covariance are acting in opposite manner). We justify existence of such scenarios, and discuss possible applications of our method beyond metabolomics. Conclusions: We demonstrate that in context of metabolomics network-based, conditional genome-wide association analysis is able to dramatically increase power of identification of loci with specific ‘contra-intuitive’ pleiotropic architecture. Our method has modest computational costs, can utilize summary level GWAS data, and is applicable to other omics data types. We anticipate that application of our method to new and existing data sets will facilitate progress in understanding genetic bases of control of molecular and complex phenotypes.