The discovery of novel therapeutic targets, defined as proteins which drugs can interact with to induce therapeutic benefits, typically represent the first and most important step of drug discovery. One solution for target discovery is target repositioning, a strategy which relies on the repurposing of known targets for new diseases, leading to new treatments, less side effects and potential drug synergies. Biological networks have emerged as powerful tools for integrating heterogeneous data and facilitating the prediction of biological or therapeutic properties. Consequently, they are widely employed to predict new therapeutic targets by characterizing potential candidates, often based on their interactions within a Protein-Protein Interaction (PPI) network, and their proximity to genes associated with the disease. However, over-reliance on PPI networks and the assumption that potential targets are necessarily near known genes can introduce biases that may limit the effectiveness of these methods. This study addresses these limitations in two ways. First, by exploiting a multi-layer network which incorporates additional information such as gene regulation, metabolite interactions, metabolic pathways, and several disease signatures such as Differentially Expressed Genes, mutated genes, Copy Number Alteration, and structural variants. Second, by extracting relevant features from the network using several approaches including proximity to disease-associated genes, but also unbiased approaches such as propagation-based methods, topological metrics, and module detection algorithms. Using prostate cancer as a case study, the best features were identified and utilized to train machine learning algorithms to predict 5 novel promising therapeutic targets for prostate cancer: IGF2R, C5AR, RAB7, SETD2 and NPBWR1.