SN
Samia Naccache
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
4,255
h-index:
34
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis

Michael Wilson et al.Jun 12, 2019
Metagenomic next-generation sequencing (NGS) of cerebrospinal fluid (CSF) has the potential to identify a broad range of pathogens in a single test.In a 1-year, multicenter, prospective study, we investigated the usefulness of metagenomic NGS of CSF for the diagnosis of infectious meningitis and encephalitis in hospitalized patients. All positive tests for pathogens on metagenomic NGS were confirmed by orthogonal laboratory testing. Physician feedback was elicited by teleconferences with a clinical microbial sequencing board and by surveys. Clinical effect was evaluated by retrospective chart review.We enrolled 204 pediatric and adult patients at eight hospitals. Patients were severely ill: 48.5% had been admitted to the intensive care unit, and the 30-day mortality among all study patients was 11.3%. A total of 58 infections of the nervous system were diagnosed in 57 patients (27.9%). Among these 58 infections, metagenomic NGS identified 13 (22%) that were not identified by clinical testing at the source hospital. Among the remaining 45 infections (78%), metagenomic NGS made concurrent diagnoses in 19. Of the 26 infections not identified by metagenomic NGS, 11 were diagnosed by serologic testing only, 7 were diagnosed from tissue samples other than CSF, and 8 were negative on metagenomic NGS owing to low titers of pathogens in CSF. A total of 8 of 13 diagnoses made solely by metagenomic NGS had a likely clinical effect, with 7 of 13 guiding treatment.Routine microbiologic testing is often insufficient to detect all neuroinvasive pathogens. In this study, metagenomic NGS of CSF obtained from patients with meningitis or encephalitis improved diagnosis of neurologic infections and provided actionable information in some cases. (Funded by the National Institutes of Health and others; PDAID ClinicalTrials.gov number, NCT02910037.).
0
Citation724
0
Save
1

Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis

Alexander Greninger et al.Sep 24, 2015
We report unbiased metagenomic detection of chikungunya virus (CHIKV), Ebola virus (EBOV), and hepatitis C virus (HCV) from four human blood samples by MinION nanopore sequencing coupled to a newly developed, web-based pipeline for real-time bioinformatics analysis on a computational server or laptop (MetaPORE). At titers ranging from 107–108 copies per milliliter, reads to EBOV from two patients with acute hemorrhagic fever and CHIKV from an asymptomatic blood donor were detected within 4 to 10 min of data acquisition, while lower titer HCV virus (1 × 105 copies per milliliter) was detected within 40 min. Analysis of mapped nanopore reads alone, despite an average individual error rate of 24 % (range 8–49 %), permitted identification of the correct viral strain in all four isolates, and 90 % of the genome of CHIKV was recovered with 97–99 % accuracy. Using nanopore sequencing, metagenomic detection of viral pathogens directly from clinical samples was performed within an unprecedented <6 hr sample-to-answer turnaround time, and in a timeframe amenable to actionable clinical and public health diagnostics.
1
Citation489
0
Save
0

A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples

Samia Naccache et al.Jun 4, 2014
Unbiased next-generation sequencing (NGS) approaches enable comprehensive pathogen detection in the clinical microbiology laboratory and have numerous applications for public health surveillance, outbreak investigation, and the diagnosis of infectious diseases. However, practical deployment of the technology is hindered by the bioinformatics challenge of analyzing results accurately and in a clinically relevant timeframe. Here we describe SURPI (“sequence-based ultrarapid pathogen identification”), a computational pipeline for pathogen identification from complex metagenomic NGS data generated from clinical samples, and demonstrate use of the pipeline in the analysis of 237 clinical samples comprising more than 1.1 billion sequences. Deployable on both cloud-based and standalone servers, SURPI leverages two state-of-the-art aligners for accelerated analyses, SNAP and RAPSearch, which are as accurate as existing bioinformatics tools but orders of magnitude faster in performance. In fast mode, SURPI detects viruses and bacteria by scanning data sets of 7–500 million reads in 11 min to 5 h, while in comprehensive mode, all known microorganisms are identified, followed by de novo assembly and protein homology searches for divergent viruses in 50 min to 16 h. SURPI has also directly contributed to real-time microbial diagnosis in acutely ill patients, underscoring its potential key role in the development of unbiased NGS-based clinical assays in infectious diseases that demand rapid turnaround times.
0
Citation448
0
Save
1

Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid

Steve Miller et al.Apr 16, 2019
Metagenomic next-generation sequencing (mNGS) for pan-pathogen detection has been successfully tested in proof-of-concept case studies in patients with acute illness of unknown etiology but to date has been largely confined to research settings. Here, we developed and validated a clinical mNGS assay for diagnosis of infectious causes of meningitis and encephalitis from cerebrospinal fluid (CSF) in a licensed microbiology laboratory. A customized bioinformatics pipeline, SURPI+, was developed to rapidly analyze mNGS data, generate an automated summary of detected pathogens, and provide a graphical user interface for evaluating and interpreting results. We established quality metrics, threshold values, and limits of detection of 0.2–313 genomic copies or colony forming units per milliliter for each representative organism type. Gross hemolysis and excess host nucleic acid reduced assay sensitivity; however, spiked phages used as internal controls were reliable indicators of sensitivity loss. Diagnostic test accuracy was evaluated by blinded mNGS testing of 95 patient samples, revealing 73% sensitivity and 99% specificity compared to original clinical test results, and 81% positive percent agreement and 99% negative percent agreement after discrepancy analysis. Subsequent mNGS challenge testing of 20 positive CSF samples prospectively collected from a cohort of pediatric patients hospitalized with meningitis, encephalitis, and/or myelitis showed 92% sensitivity and 96% specificity relative to conventional microbiological testing of CSF in identifying the causative pathogen. These results demonstrate the analytic performance of a laboratory-validated mNGS assay for pan-pathogen detection, to be used clinically for diagnosis of neurological infections from CSF.
1
Citation391
0
Save
0

A novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012–14): a retrospective cohort study

Alexander Greninger et al.Apr 6, 2015

Summary

Background

 Enterovirus D68 was implicated in a widespread outbreak of severe respiratory illness across the USA in 2014 and has also been reported sporadically in patients with acute flaccid myelitis. We aimed to investigate the association between enterovirus D68 infection and acute flaccid myelitis during the 2014 enterovirus D68 respiratory outbreak in the USA. 

Methods

 Patients with acute flaccid myelitis who presented to two hospitals in Colorado and California, USA, between Nov 24, 2013, and Oct 11, 2014, were included in the study. Additional cases identified from Jan 1, 2012, to Oct 4, 2014, via statewide surveillance were provided by the California Department of Public Health. We investigated the cause of these cases by metagenomic next-generation sequencing, viral genome recovery, and enterovirus D68 phylogenetic analysis. We compared patients with acute flaccid myelitis who were positive for enterovirus D68 with those with acute flaccid myelitis but negative for enterovirus D68 using the two-tailed Fisher's exact test, two-sample unpaired t test, and Mann-Whitney U test. 

Findings

 48 patients were included: 25 with acute flaccid myelitis, two with enterovirus-associated encephalitis, five with enterovirus-D68-associated upper respiratory illness, and 16 with aseptic meningitis or encephalitis who tested positive for enterovirus. Enterovirus D68 was detected in respiratory secretions from seven (64%) of 11 patients comprising two temporally and geographically linked acute flaccid myelitis clusters at the height of the 2014 outbreak, and from 12 (48%) of 25 patients with acute flaccid myelitis overall. Phylogenetic analysis revealed that all enterovirus D68 sequences associated with acute flaccid myelitis grouped into a clade B1 strain that emerged in 2010. Of six coding polymorphisms in the clade B1 enterovirus D68 polyprotein, five were present in neuropathogenic poliovirus or enterovirus D70, or both. One child with acute flaccid myelitis and a sibling with only upper respiratory illness were both infected by identical enterovirus D68 strains. Enterovirus D68 viraemia was identified in a child experiencing acute neurological progression of his paralytic illness. Deep metagenomic sequencing of cerebrospinal fluid from 14 patients with acute flaccid myelitis did not reveal evidence of an alternative infectious cause to enterovirus D68. 

Interpretation

 These findings strengthen the putative association between enterovirus D68 and acute flaccid myelitis and the contention that acute flaccid myelitis is a rare yet severe clinical manifestation of enterovirus D68 infection in susceptible hosts. 

Funding

 National Institutes of Health, University of California, Abbott Laboratories, and the Centers for Disease Control and Prevention.
0

An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data

Xutao Deng et al.Jan 13, 2015
Abstract Next-generation sequencing (NGS) approaches rapidly produce millions to billions of short reads, which allow pathogen detection and discovery in human clinical, animal and environmental samples. A major limitation of sequence homology-based identification for highly divergent microorganisms is the short length of reads generated by most highly parallel sequencing technologies. Short reads require a high level of sequence similarities to annotated genes to confidently predict gene function or homology. Such recognition of highly divergent homologues can be improved by reference-free (de novo) assembly of short overlapping sequence reads into larger contigs. We describe an ensemble strategy that integrates the sequential use of various de Bruijn graph and overlap-layout-consensus assemblers with a novel partitioned sub-assembly approach. We also proposed new quality metrics that are suitable for evaluating metagenome de novo assembly. We demonstrate that this new ensemble strategy tested using in silico spike-in, clinical and environmental NGS datasets achieved significantly better contigs than current approaches.
0
Citation241
0
Save
0

The Perils of Pathogen Discovery: Origin of a Novel Parvovirus-Like Hybrid Genome Traced to Nucleic Acid Extraction Spin Columns

Samia Naccache et al.Sep 12, 2013
ABSTRACT Next-generation sequencing was used for discovery and de novo assembly of a novel, highly divergent DNA virus at the interface between the Parvoviridae and Circoviridae . The virus, provisionally named parvovirus-like hybrid virus (PHV), is nearly identical by sequence to another DNA virus, NIH-CQV, previously detected in Chinese patients with seronegative (non-A-E) hepatitis. Although we initially detected PHV in a wide range of clinical samples, with all strains sharing ∼99% nucleotide and amino acid identity with each other and with NIH-CQV, the exact origin of the virus was eventually traced to contaminated silica-binding spin columns used for nucleic acid extraction. Definitive confirmation of the origin of PHV, and presumably NIH-CQV, was obtained by in-depth analyses of water eluted through contaminated spin columns. Analysis of environmental metagenome libraries detected PHV sequences in coastal marine waters of North America, suggesting that a potential association between PHV and diatoms (algae) that generate the silica matrix used in the spin columns may have resulted in inadvertent viral contamination during manufacture. The confirmation of PHV/NIH-CQV as laboratory reagent contaminants and not bona fide infectious agents of humans underscores the rigorous approach needed to establish the validity of new viral genomes discovered by next-generation sequencing.
0
Citation232
0
Save
Load More