AL
Andrew Lackner
Author with expertise in Natural Killer Cells in Immunity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
10,386
h-index:
78
/
i10-index:
241
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection

Li Liu et al.Feb 20, 2019
Newly emerging viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle Eastern respiratory syndrome CoVs (MERS-CoV), and H7N9, cause fatal acute lung injury (ALI) by driving hypercytokinemia and aggressive inflammation through mechanisms that remain elusive. In SARS-CoV/macaque models, we determined that anti–spike IgG (S-IgG), in productively infected lungs, causes severe ALI by skewing inflammation-resolving response. Alveolar macrophages underwent functional polarization in acutely infected macaques, demonstrating simultaneously both proinflammatory and wound-healing characteristics. The presence of S-IgG prior to viral clearance, however, abrogated wound-healing responses and promoted MCP1 and IL-8 production and proinflammatory monocyte/macrophage recruitment and accumulation. Critically, patients who eventually died of SARS (hereafter referred to as deceased patients) displayed similarly accumulated pulmonary proinflammatory, absence of wound-healing macrophages, and faster neutralizing antibody responses. Their sera enhanced SARS-CoV–induced MCP1 and IL-8 production by human monocyte–derived wound-healing macrophages, whereas blockade of FcγR reduced such effects. Our findings reveal a mechanism responsible for virus-mediated ALI, define a pathological consequence of viral specific antibody response, and provide a potential target for treatment of SARS-CoV or other virus-mediated lung injury.
0

B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma

Ilona Kryczek et al.Apr 10, 2006
Tumor-associated macrophages are a prominent component of ovarian cancer stroma and contribute to tumor progression. B7-H4 is a recently identified B7 family molecule. We show that primary ovarian tumor cells express intracellular B7-H4, whereas a fraction of tumor macrophages expresses surface B7-H4. B7-H4+ tumor macrophages, but not primary ovarian tumor cells, suppress tumor-associated antigen-specific T cell immunity. Blocking B7-H4-, but not arginase-, inducible nitric oxide synthase or B7-H1 restored the T cell stimulating capacity of the macrophages and contributes to tumor regression in vivo. Interleukin (IL)-6 and IL-10 are found in high concentrations in the tumor microenvironment. These cytokines stimulate macrophage B7-H4 expression. In contrast, granulocyte/macrophage colony-stimulating factor and IL-4, which are limited in the tumor microenvironment, inhibit B7-H4 expression. Ectopic expression of B7-H4 makes normal macrophages suppressive. Thus, B7-H4+ tumor macrophages constitute a novel suppressor cell population in ovarian cancer. B7-H4 expression represents a critical checkpoint in determining host responses to dysfunctional cytokines in ovarian cancer. Blocking B7-H4 or depleting B7-H4+ tumor macrophages may represent novel strategies to enhance T cell tumor immunity in cancer.
0
Citation693
0
Save
0

QUINOLINIC ACID AND KYNURENINE PATHWAY METABOLISM IN INFLAMMATORY AND NON-INFLAMMATORY NEUROLOGICAL DISEASE

Melvyn Heyes et al.Jan 1, 1992
Neurological dysfunction, seizures and brain atrophy occur in a broad spectrum of acute and chronic neurological diseases. In certain instances, over-stimulation of N-methyl-D-aspartate receptors has been implicated Quinolinic acid (QUIN) is an endogenous N-methyl-D-aspartate receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction. Conversely, the related metabolite, kynurenic acid, is an antagonist of N-methyl-D-aspartate receptors and could modulate the neurotoxic effects of QUIN as well as disrupt excitatory amino acid neurotransmission In the present study, markedly increased concentrations of QUIN were found in both lumbar cerebrospinal fluid (CSF) and post-mortem brain tissue of patients with inflammatory diseases (bacterial, viral, fungal and parasitic infections, meningitis, autoimmune diseases and septicaemia) independent of breakdown of the blood-brain barrier. The concentrations of kynurenic acid were also increased, but generally to a lesser degree than the increases in QUIN. In contrast, no increases in CSF QUIN were found in chronic neurodegenerative disorders, depression or myoclonic seizure disorders, while CSF kynurenic acid concentrations were significantly lower in Huntington's disease and Alzheimer's disease. In inflammatory disease patients, proportional increases in CSF L-kynurenine and reduced L-tryptophan accompanied the increases in CSF QUIN and kynurenic acid. These responses are consistent with induction of indoleamine-2,3-dioxygenase, the first enzyme of the kynurenine pathway which converts L-tryptophan to kynurenic acid and QUIN Indeed, increases in both indoleamine-2,3-dioxygenase activity and QUIN concentrations were observed in the cerebral cortex of macaques infected with retrovirus, particularly those with local inflammatory lesions. Correlations between CSF QUIN, kynurenic acid and L-kynurenine with markers of immune stimulation (neopterin, white blood cell counts and lgG levels) indicate a relationship between accelerated kynurenine pathway metabolism and the degree of intracerebral immune stimulation. We conclude that inflammatory diseases are associated with accumulation of QUIN, kynurenic acid and L-kynurenine within the central nervous system, but that the available data do not support a role for QUIN in the aetiology of Huntington's disease or Alzheimer’s disease In conjunction with our previous reports that CSF QUIN concentrations are correlated to objective measures of neuropsychological deficits in HIV-1-infected patients, we hypothesize that QUIN and kynurenic acid are mediators of neuronal dysfunction and nerve cell death in inflammatory diseases. Therefore, strategies to attenuate the neurological effects of kynurenine pathway metabolites or attenuate the rate of their synthesis offer new approaches to therapy.
0

The Macaque Gut Microbiome in Health, Lentiviral Infection, and Chronic Enterocolitis

Philip McKenna et al.Jan 28, 2008
The vertebrate gut harbors a vast community of bacterial mutualists, the composition of which is modulated by the host immune system. Many gastrointestinal (GI) diseases are expected to be associated with disruptions of host-bacterial interactions, but relatively few comprehensive studies have been reported. We have used the rhesus macaque model to investigate forces shaping GI bacterial communities. We used DNA bar coding and pyrosequencing to characterize 141,000 sequences of 16S rRNA genes obtained from 100 uncultured GI bacterial samples, allowing quantitative analysis of community composition in health and disease. Microbial communities of macaques were distinct from those of mice and humans in both abundance and types of taxa present. The macaque communities differed among samples from intestinal mucosa, colonic contents, and stool, paralleling studies of humans. Communities also differed among animals, over time within individual animals, and between males and females. To investigate changes associated with disease, samples of colonic contents taken at necropsy were compared between healthy animals and animals with colitis and undergoing antibiotic therapy. Communities from diseased and healthy animals also differed significantly in composition. This work provides comprehensive data and improved methods for studying the role of commensal microbiota in macaque models of GI diseases and provides a model for the large-scale screening of the human gut microbiome.
0
Citation421
0
Save
0

CXCL12 and Vascular Endothelial Growth Factor Synergistically Induce Neoangiogenesis in Human Ovarian Cancers

Ilona Kryczek et al.Jan 15, 2005
Abstract Ovarian carcinomas have a poor prognosis, often associated with multifocal i.p. dissemination accompanied by intense neovascularization. To examine tumor angiogenesis in the tumor microenvironment, we studied malignant ascites and tumors of patients with untreated ovarian carcinoma. We observed that malignant ascites fluid induced potent in vivo neovascularization in Matrigel assay. We detected a sizable amount of vascular endothelial cell growth factor (VEGF) in malignant ascites. However, pathologic concentration of VEGF is insufficient to induce in vivo angiogenesis. We show that ovarian tumors strongly express CXC chemokine stromal-derived factor (SDF-1/CXCL12). High concentration of CXCL12, but not the pathologic concentration of CXCL12 induces in vivo angiogenesis. Strikingly, pathologic concentrations of VEGF and CXCL12 efficiently and synergistically induce in vivo angiogenesis. Migration, expansion, and survival of vascular endothelial cells (VEC) form the essential functional network of angiogenesis. We further provide a mechanistic basis for explaining the interaction between CXCL12 and VEGF. We show that VEGF up-regulates the receptor for CXCL12, CXCR4 expression on VECs, and synergizes CXCL12-mediated VEC migration. CXCL12 synergizes VEGF-mediated VEC expansion and synergistically protects VECs from sera starvation-induced apoptosis with VEGF. Finally, we show that hypoxia synchronously induces tumor CXCL12 and VEGF production. Therefore, hypoxia triggered tumor CXCL12 and VEGF form a synergistic angiogenic axis in vivo. Hypoxia-induced signals would be the important factor for initiating and maintaining an active synergistic angiogeneic pathway mediated by CXCL12 and VEGF. Thus, interrupting this synergistic axis, rather than VEGF alone, will be a novel efficient antiangiogenesis strategy to treat cancer.
0
Citation401
0
Save
Load More