JC
Joel Cohen
Author with expertise in Application of Stable Isotopes in Trophic Ecology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(27% Open Access)
Cited by:
11,782
h-index:
86
/
i10-index:
248
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Body Sizes of Animal Predators and Animal Prey in Food Webs

Joel Cohen et al.Jan 1, 1993
Summary 1. We measured the body sizes (weights or lengths) of animal species found in the food webs of natural communities. In c. 90% of the feeding links among the animal species with known sizes, a larger predator consumes a smaller prey. 2. Larger predators eat prey with a wider range of body sizes than do smaller predators. The geometric mean predator size increases with the size of prey. The increase in geometric mean predator size is less than proportional to the increase in prey size (i.e. has a slope less than 1 on log-log coordinates). 3. The geometric mean sizes of prey and predators increase as the habitat of webs changes from aquatic to terrestrial to coastal to marine. Within each type of habitat, mean prey sizes are always less than mean predator sizes, and prey and predator sizes are always positively correlated. 4. Feeding relations order the metabolic types of organisms from invertebrate to vertebrate ectotherm to vertebrate endotherm. Organisms commonly eat other organisms with the same or lower metabolic type, but (with very rare exceptions) organisms do not eat other organisms with a higher metabolic type. Mean sizes of prey increase as the metabolic type of prey changes from invertebrate to vertebrate ectotherm to vertebrate endotherm, but the same does not hold true for predators. 5. Prey and predator sizes are positively correlated in links from invertebrate prey to invertebrate predators. In links with other combinations of prey and predator metabolic types, the correlation between prey and predator body sizes is rarely large when it is positive, and in some cases is even negative. 6. Species sizes are roughly log-normally distributed. 7. Body size offers a good (though not perfect) interpretation of the ordering of animal species assumed in the cascade model, a stochastic model of food web structure. When body size is taken as the physical interpretation of the ordering assumed in the cascade model, and when the body sizes of different animal species are taken as log-normally distributed, many of the empirical findings can be explained in terms of the cascade model.
0
Paper
Citation759
0
Save
0

Interaction strengths in food webs: issues and opportunities

Eric Berlow et al.Apr 16, 2004
Summary Recent efforts to understand how the patterning of interaction strength affects both structure and dynamics in food webs have highlighted several obstacles to productive synthesis. Issues arise with respect to goals and driving questions, methods and approaches, and placing results in the context of broader ecological theory. Much confusion stems from lack of clarity about whether the questions posed relate to community‐level patterns or to species dynamics, and to what authors actually mean by the term ‘interaction strength’. Here, we describe the various ways in which this term has been applied and discuss the implications of loose terminology and definition for the development of this field. Of particular concern is the clear gap between theoretical and empirical investigations of interaction strengths and food web dynamics. The ecological community urgently needs to explore new ways to estimate biologically reasonable model coefficients from empirical data, such as foraging rates, body size, metabolic rate, biomass distribution and other species traits. Combining numerical and analytical modelling approaches should allow exploration of the conditions under which different interaction strengths metrics are interchangeable with regard to relative magnitude, system responses, and species identity. Finally, the prime focus on predator–prey links in much of the research to date on interaction strengths in food webs has meant that the potential significance of non‐trophic interactions, such as competition, facilitation and biotic disturbance, has been largely ignored by the food web community. Such interactions may be important dynamically and should be routinely included in future food web research programmes.
0
Paper
Citation746
0
Save
0

CONSUMER–RESOURCE BODY-SIZE RELATIONSHIPS IN NATURAL FOOD WEBS

Ulrich Brose et al.Oct 1, 2006
It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer–resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator–prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator–prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer–resource interaction strengths may vary systematically across different habitat categories and consumer types.
0
Paper
Citation639
0
Save
0

Ecological community description using the food web, species abundance, and body size

Joel Cohen et al.Jan 23, 2003
Measuring the numerical abundance and average body size of individuals of each species in an ecological community's food web reveals new patterns and illuminates old ones. This approach is illustrated using data from the pelagic community of a small lake: Tuesday Lake, Michigan, United States. Body mass varies almost 12 orders of magnitude. Numerical abundance varies almost 10 orders of magnitude. Biomass abundance (average body mass times numerical abundance) varies only 5 orders of magnitude. A new food web graph, which plots species and trophic links in the plane spanned by body mass and numerical abundance, illustrates the nearly inverse relationship between body mass and numerical abundance, as well as the pattern of energy flow in the community. Species with small average body mass occur low in the food web of Tuesday Lake and are numerically abundant. Larger-bodied species occur higher in the food web and are numerically rarer. Average body size explains more of the variation in numerical abundance than does trophic height. The trivariate description of an ecological community by using the food web, average body sizes, and numerical abundance includes many well studied bivariate and univariate relationships based on subsets of these three variables. We are not aware of any single community for which all of these relationships have been analyzed simultaneously. Our approach demonstrates the connectedness of ecological patterns traditionally treated as independent. Moreover, knowing the food web gives new insight into the disputed form of the allometric relationship between body mass and abundance.
0
Paper
Citation584
0
Save
Load More