LM
Luis Madrigal‐Pérez
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
0
h-index:
11
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Glutathione levels influence chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner

Mayra Tello‐Padilla et al.Nov 9, 2017
Diet plays a key role in determining the longevity of the organisms since it has been demonstrated that glucose restriction increases lifespan whereas a high-glucose diet decreases it. However, the molecular basis of how diet leads to the aging process is currently unknown. We propose that the quantity of glucose that fuels respiration influences ROS generation and glutathione levels, and both chemical species impact in the aging process. Herein, we provide evidence that mutation of the gene GSH1 diminishes glutathione levels. Moreover, glutathione levels were higher with 0.5% than in 10% glucose in the gsh1Δ and WT strains. Interestingly, the chronological life span (CLS) was lowered in the gsh1Δ strain cultured with 10% glucose but not under dietary restriction. The gsh1Δ strain also showed an inhibition of the mitochondrial respiration in 0.5 and 10% of glucose but only increased the H2O2 levels under dietary restriction. These results correlate well with the GSH/GSSG ratio, which showed a decrease in gsh1Δ strain cultured with 0.5% glucose. Altogether these data indicate that glutathione has a major role in the function of electron transport chain (ETC) and is essential to maintain life span of Saccharomyces cerevisiae in 10% glucose.
0

Influence of SNF1 complex on growth, glucose metabolism and mitochondrial respiration of Saccharomyces cerevisiae

Cecilia Martinez‐Ortiz et al.Mar 23, 2018
The switch of mitochondrial respiration to fermentation as the main pathway to produce ATP through the increase of glycolytic flux is known as the Crabtree effect. The elucidation of the molecular mechanism of the Crabtree effect may have important applications in ethanol production and lay the groundwork for the Warburg effect, which is essential in the molecular etiology of cancer. A key piece in this mechanism could be Snf1p, which is a protein that participates in the nutritional response that includes glucose metabolism. Thus, this work aimed to recognize the role of the SNF1 complex on the glycolytic flux and mitochondrial respiration, to gain insights about its relationship with the Crabtree effect. Herein, we found that in Saccharomyces cerevisiae cells grown at 1% glucose, mutation of SNF1 gene decreased glycolytic flux, increased NAD(P)H, enhanced HXK2 gene transcription, and decreased mitochondrial respiration. Meanwhile, the same mutation increased the mitochondrial respiration of cells grown at 10% glucose. Moreover, SNF4 gene deletion increased respiration and growth at 1% of glucose. In the case of the GAL83 gene, we did not detect any change in mitochondrial respiration or growth. Altogether, these findings indicate that SNF1 is vital to switch from mitochondrial respiration to fermentation.
0

Resveratrol Induces Mitochondrial Dysfunction And Decreases Chronological Life Span Of Saccharomyces cerevisiae In A Glucose-Dependent Manner

Minerva Ramos‐Gómez et al.Mar 19, 2017
A broad range of health benefits have been attributed to resveratrol (RSV) supplementation in mammalian systems, including the increases in longevity. Nonetheless, despite the growing number of studies performed with RSV, the molecular mechanism by which it acts still remains unknown. Recently, it has been proposed that inhibition of the oxidative phosphorylation activity is the principal mechanism of RSV action. This mechanism suggests that RSV might induce mitochondrial dysfunction resulting in oxidative damage to cells with a concomitant decrease of cell viability and cellular life span. To prove this hypothesis, the chronological life span (CLS) of Saccharomyces cerevisiae was studied as it is accepted as an important model of oxidative damage and aging. In addition, oxygen consumption, mitochondrial membrane potential, and hydrogen peroxide (H2O2) release were measured in order to determine the extent of mitochondrial dysfunction. The results demonstrated that the supplementation of S. cerevisiae cultures with 100 μM RSV decreased CLS in a glucose-dependent manner. At high-level glucose, RSV supplementation increased oxygen consumption during the exponential phase yeast cultures, but inhibited it in chronologically aged yeast cultures. However, at low-level glucose, oxygen consumption was inhibited in yeast cultures in the exponential phase as well as in chronologically aged cultures. Furthermore, RSV supplementation promoted the polarization of the mitochondrial membrane in both cultures. Finally, RSV decreased the release of H2O2 with high-level glucose and increased it at low-level glucose. Altogether, this data supports the hypothesis that RSV supplementation decreases CLS as a result of mitochondrial dysfunction and this phenotype occurs in a glucose-dependent manner.
0

Snf1p/Hxk2p/Mig1p pathway regulates exponential growth, mitochondrial respiration, and hexose transporters transcription in Saccharomyces cerevisiae

Andres Carrillo‐Garmendia et al.Jun 23, 2020
Abstract The Crabtree effect occurs under high-glucose concentrations and is characterized by the increase of the growth and a decrease in mitochondrial respiration of yeasts. Regulation of the Crabtree effect could enhance ethanol production with biotechnological purposes and a better understanding of the etiology of cancer due to its similitude with the Warburg effect. Nonetheless, the conclusive molecular mechanism of the Crabtree effect is still on debate. The pathway Snf1p/Hxk2p/Mig1p has been linked with the transcriptional regulation of the hexose transporters and has also been identified in the modulation of phenotypes related to the Crabtree effect. Nevertheless, it has not been directly identified the genetic regulation of the hexose transporters with modulation of the Crabtree effect phenotypes by Snf1p/Hxk2p/Mig1p pathway. In this sense, we provide evidence that the deletion of the SNF1 and HXK2 genes affects the exponential growth, mitochondrial respiration, and the transcription of hexose transporters in a glucose-dependent manner in Saccharomyces cerevisiae . The Vmax of the main hexose transporters transcribed showed a positive correlation with the exponential growth and a negative correlation with the mitochondrial respiration. Transcription of the gene HXT2 was the most affected by the deletion of the pathway SNF1/HXK2/MIG1 . Deletion of the orthologous genes SNF1 and HXK2 in the Crabtree negative yeast, K. marxianus, has a differential effect in exponential growth and mitochondrial respiration in comparison with S. cerevisiae . Overall, these results indicate that the SNF1/HXK2/MIG1 pathway transcriptionally regulates the hexose transporters having an influence in the exponential growth and mitochondrial respiration in a glucose-dependent manner.
0

Bergmeyer Glucose Quantification for Microbiological Samples

Itan Ruiz-Hernandez et al.Jan 17, 2025
The glucose concentration is a key indicator of cellular metabolism and could indicate the total metabolism rate, an aberration in glucose metabolism, and, in some cases, how cells couple glucose metabolism to energetic metabolism. In addition, intracellular and extracellular glucose levels are indicative of the cellular metabolic status. Enzymatic techniques, such as Bergmeyer glucose quantification, are more accurate and sensitive than other techniques, such as dinitrosalicylic acid or fluorescence methods, which are usually utilized in microbiology. Although mainly used in the clinical area, Bergmeyer glucose quantification can also be applied to any cell but has not been reported in detail for bacteria, fungi, yeasts, or other microorganisms. Herein, we present a methodology to quantify glucose from bacteria and yeast samples using the enzymatic Bergmeyer glucose quantification method. The procedure involved the enzymes glucose oxidase, peroxidase, and o-dianisidine dihydrochloride incubated at 37 °C for 20 min, followed by the addition of sulfuric acid. The absorbance is then measured at 545 nm. It is important to highlight that although this technique presents difficulties in measuring high concentrations of glucose (above 60 g/L), it is possible to measure concentrations below 50 g/L using dilution factors. This enzymatic approach is valuable for research and analysis in microbiology and other scientific areas. The precision and sensitivity of the method make it helpful for detecting even low concentrations of glucose in microbiological samples.