The glucose concentration is a key indicator of cellular metabolism and could indicate the total metabolism rate, an aberration in glucose metabolism, and, in some cases, how cells couple glucose metabolism to energetic metabolism. In addition, intracellular and extracellular glucose levels are indicative of the cellular metabolic status. Enzymatic techniques, such as Bergmeyer glucose quantification, are more accurate and sensitive than other techniques, such as dinitrosalicylic acid or fluorescence methods, which are usually utilized in microbiology. Although mainly used in the clinical area, Bergmeyer glucose quantification can also be applied to any cell but has not been reported in detail for bacteria, fungi, yeasts, or other microorganisms. Herein, we present a methodology to quantify glucose from bacteria and yeast samples using the enzymatic Bergmeyer glucose quantification method. The procedure involved the enzymes glucose oxidase, peroxidase, and o-dianisidine dihydrochloride incubated at 37 °C for 20 min, followed by the addition of sulfuric acid. The absorbance is then measured at 545 nm. It is important to highlight that although this technique presents difficulties in measuring high concentrations of glucose (above 60 g/L), it is possible to measure concentrations below 50 g/L using dilution factors. This enzymatic approach is valuable for research and analysis in microbiology and other scientific areas. The precision and sensitivity of the method make it helpful for detecting even low concentrations of glucose in microbiological samples.