HY
Hua-Ting Yao
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
12
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MentaLiST – A fast MLST caller for large MLST schemes

Pedro Feijão et al.Aug 6, 2017
Abstract MLST (multi-locus sequence typing) is a classic technique for genotyping bacteria, widely applied for pathogen outbreak surveillance. Traditionally, MLST is based on identifying sequence types from a small number of housekeeping genes. With the increasing availability of whole-genome sequencing (WGS) data, MLST methods have evolved toward larger typing schemes, based on a few hundred genes (core genome MLST, cgMLST) to a few thousand genes (whole genome MLST, wgMLST). Such large-scale MLST schemes have been shown to provide a finer resolution and are increasingly used in various contexts such as hospital outbreaks or foodborne pathogen outbreaks. This methodological shift raises new computational challenges, especially given the large size of the schemes involved. Very few available MLST callers are currently capable of dealing with large MLST schemes. We introduce MentaLiST, a new MLST caller, based on a k -mer voting algorithm and written in the Julia language, specifically designed and implemented to handle large typing schemes. We test it on real and simulated data to show that MentaLiST is faster than any other available MLST caller while providing the same or better accuracy, and is capable of dealing with MLST scheme with up to thousands of genes while requiring limited computational resources. MentaLiST source code and easy installation instructions using a Conda package are available at https://github.com/WGS-TB/MentaLiST .
0
Citation12
0
Save
16

Salt corrections for RNA secondary structures in the ViennaRNA package

Hua-Ting Yao et al.Apr 8, 2023
Abstract Background RNA features a highly negatively charged phosphate backbone that attracts a of cloud counter-ions that reduce the electrostatic repulsion in a concentration dependent manner. Ion concentrations thus have a large influence on folding and stability of RNA structures. Despite their well-documented effects, salt effects are not handled by currently available secondary stucture prediction algorithms. Combining Debye-Hückel potentials for line charges and Manning’s counter-ion condensation theory, Einert et al . [ Biophys. J . 100 : 2745-2753 (2011)] modeled the energetic effects contributions monovalent cations on loops and helices. Results The model of Einert et al . is adapted to match the structure of the dynamic programming recursion of RNA secondary structure prediction algorithms. An empirical term describing the dependence salt dependence of the duplex initiation energy is added to improve co-folding predictions for two or more RNA strands. The slightly modified model is implemented in the ViennaRNA package in such way that only the energy parameters but not the algorithmic structure is affected. A comparison with data from the literature show that predicted free energies and melting temperatures are in reasonable agreement with experiments. Conclusion The new feature in the ViennaRNA package makes it possible to study effects of salt concentrations on RNA folding in a systematic manner. Strictly speaking, the model pertains only to mono-valent cations, and thus covers the most important parameter, i.e., the NaCl concentration. It remains a question for future research to what extent unspecific effects of bi- and tri-valent cations can be approximated in a similar manner. Availability Corrections for the concentration of monovalent cations are available in the ViennaRNA package starting from version 2.6.0.
0

Stochastic Sampling of Structural Contexts Improves the Scalability and Accuracy of RNA 3D Module Identification

Roman Sarrazin‐Gendron et al.Nov 8, 2019
RNA structures possess multiple levels of structural organization. Secondary structures are made of canonical (i.e. Watson-Crick and Wobble) helices, connected by loops whose local conformations are critical determinants of global 3D architectures. Such local 3D structures consist of conserved sets of non-canonical base pairs, called RNA modules. Their prediction from sequence data is thus a milestone toward 3D structure modelling. Unfortunately, the computational efficiency and scope of the current 3D module identification methods are too limited yet to benefit from all the knowledge accumulated in modules databases. Here, we introduce BayesPairing 2, a new sequence search algorithm leveraging secondary structure tree decomposition which allows to reduce the computational complexity and improve predictions on new sequences. We benchmarked our methods on 75 modules and 6380 RNA sequences, and report accuracies that are comparable to the state of the art, with considerable running time improvements. When identifying 200 modules on a single sequence, BayesPairing 2 is over 100 times faster than its previous version, opening new doors for genome-wide applications.