XB
Xavier Bellés
Author with expertise in Genomic Insights into Social Insects and Symbiosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(45% Open Access)
Cited by:
438
h-index:
52
/
i10-index:
142
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

DNA methylation in cockroaches is essential in early embryo development and reduces gene expression noise

Alba Ventos‐Alfonso et al.Aug 27, 2020
Abstract The influence of DNA methylation on gene behavior, and its consequent phenotypic effects appear to be very important, but the details are not well understood. Insects offer a diversity of DNA methylation modes, making them an excellent lineage for comparative analyses. However, functional studies have tended to focus on quite specialized holometabolan species, such as wasps, bees, beetles, and flies. Here we have studied DNA methylation in a hemimetabolan insect, the cockroach Blattella germanica , a model of early-branching insects. In this cockroach, one of the main genes responsible for DNA methylation, DNA methyltransferase 1 ( DNMT1 ), is expressed in early embryogenesis. In our experiments, DNMT1 interference by RNAi reduces DNA methylation and impairs blastoderm formation. Using Reduced Representation Bisulfite Sequencing (RRBS) and transcriptomic analyses, we observed that hypermethylated genes are associated with metabolism and are highly expressed, whereas hypomethylated genes are related to signaling and have low expression levels. Moreover, the expression change in hypermethylated genes is greter than that in hypomethylated genes, whereas hypermethylated genes have less expression variability than hypomethylated genes. The latter observation has also been reported for humans and in Arabidopsis plants. A reduction in expression noise may therefore be one of the few universal effects of DNA methylation.
5
Citation2
0
Save
1

The mayfly subimago explained. The regulation of metamorphosis in Ephemeroptera

Orathai Kamsoi et al.Mar 17, 2021
ABSTRACT In the Paleozoic era, more than 400 million years ago, insects continued molting after forming functional wings. Today, however, all flying insects stop molting after metamorphosis when they become fully winged. The only exception is the mayflies (Ephemeroptera), which molt in the subimago, a flying intermediate stage between the nymph and the adult. However, the identity and homology of the subimago remains underexplored. Debate remains regarding whether this stage represents a modified nymph, an adult, or a pupa like that of butterflies. Another relevant question is why do mayflies maintain the subimago stage despite the risk of molting fragile membranous wings. These questions have intrigued numerous authors but nonetheless, clear answers have not yet been found. However, by combining morphological studies, hormonal treatments, and molecular analysis in the mayfly species Cloeon dipterum , we found new answers to these old questions. We observed that treatment with a juvenile hormone analog in the last nymphal instar stimulated the expression of Kr-h1 gene and reduced that of E93 , which suppress and trigger metamorphosis, respectively. Consequently, the subimago is not formed in these treated mayflies. This indicates that metamorphosis is determined prior to the formation of the subimago, which must therefore be considered an instar of the adult stage. We also observed that the forelegs dramatically grow between the last nymphal instar, the subimago, and the adult. This necessary growth is spread over the last two stages, which could explain, at least in part, the adaptive sense of the subimago.
1
Paper
Citation1
0
Save
0

Functional redundancy of the three insulin receptors of cockroaches

David Pujal et al.Sep 1, 2024
Gene duplication is a fundamental evolutionary process which provides opportunities to acquire new gene functions. In the case of the insulin receptors (InRs) in cockroaches and close-related insects, two successive duplications determined the occurrence of three InR genes: InR2, InR1 and InR3, the last two forming a sister cluster to InR2. The biological role of each of the gene duplicates and whether they resulted from neofunctionalization or subfunctionalization is still unclear. The analysis of the sequences from different lineages did not detect positive selection as driving the divergence of InR1 and InR3, discarding neofunctionalization, and suggesting that there is no functional divergence between both gene copies. Using the cockroach Blattella germanica as a model, we have determined that BgInR2 is the gene with the highest expression levels in all the tissues analyzed, both in adult females and males, as well as in nymphs and embryos. BgInR3 is second in expression levels while BgInR1 is expressed at lower levels and only in some tissues. The selective depletion by RNAi of each of the three InRs, analyzed in terms of phenotype and fat body transcriptomic profiles, resulted in essentially redundant effects, with a magnitude approximately proportional to the level of expression of the respective InR. Therefore, the results indicate that the InR duplicates likely experienced a subfunctionalization process, by which the three InRs maintained similar functions but contributing to those functions proportionally to their expression levels.
0

Hemimetabolous insects elucidate the origin of sexual development via alternative splicing

Judith Wexler et al.Mar 26, 2019
Insects are the only animals in which sexual differentiation is controlled by sex-specific RNA splicing. The doublesex (dsx) transcription factor produces distinct male and female protein isoforms (DsxM and DsxF) under the control of the RNA splicing factor transformer (tra). tra itself is also alternatively spliced so that a functional Tra protein is only present in females; thus, DsxM is produced by default, while DsxF expression requires Tra. The sex-specific Dsx isoforms are essential for both male and female sexual differentiation. This pathway is profoundly different from the molecular mechanisms that control sex-specific development in other animal groups. In animals as different as vertebrates, nematodes, and crustaceans, sexual differentiation involves male-specific transcription of dsx-related transcription factors that are not alternatively spliced and play no role in female sexual development. To understand how the unique splicing-based mode of sexual differentiation found in insects evolved from a more ancestral transcription-based mechanism, we examined dsx and tra expression in three basal, hemimetabolous insect orders. We find that functional Tra protein is limited to females in the kissing bug Rhodnius prolixus (Hemiptera), but is present in both sexes in the louse Pediculus humanus (Phthiraptera) and the cockroach Blattella germanica (Blattodea). Although alternatively spliced dsx isoforms are seen in all these insects, they are sex-specific in the cockroach and the kissing bug but not in the louse. In B. germanica, RNAi experiments show that dsx is necessary for male, but not female, sexual differentiation, while tra controls female development via a dsx-independent pathway. Our results suggest that the distinctive insect mechanism based on the tra-dsx splicing cascade evolved in a gradual, mosaic process: sex-specific splicing of dsx predates its role in female sexual differentiation, while the role of tra in regulating dsx splicing and in sexual development more generally predates sex-specific expression of the Tra protein. We present a model where the canonical tra-dsx axis originated via merger between expanding dsx function (from males to both sexes) and narrowing tra function (from a general splicing factor to the dedicated regulator of dsx).
1

Reduction of embryonic E93 expression as a key factor for the evolution of insect metamorphosis

Ana Fernández-Nicolas et al.Oct 5, 2022
ABSTRACT The early embryo of the cockroach Blattella germanica exhibits high E93 expression. In general, E93 triggers adult morphogenesis during postembryonic development, but in the cockroach E93 is also crucial in early embryogenesis. Moreover, the embryonic levels of E93 expression are high in hemimetabolan insects, while in holometabolans they are very low. They are also low in Thysanoptera and in Hemiptera Sternorrhyncha with postembryonic quiescent stages, as well as in Odonata, the nymph of which is very different from the adult. In ametabolans, such as the Zygentoma Thermobia domestica, E93 expression levels are very high in the early embryo, whereas during postembryonic development they are medium and relatively constant. Given that embryogenesis of hemimetabolans yields an adultiform nymph, we speculate that E93 plays some sort of adult triggering role in the embryo of these species. We conjecture that the reduction of E93 transcript levels in the embryo has been instrumental in the evolution of insect metamorphosis. The suppression of E93 expression during the nymphal period, and its concentration in the preadult stage, is consubstantial with the emergence of hemimetaboly. As such, attenuation of E93 expression in the embryo could have resulted in a larval genetic program and the emergence of holometaboly. Independent decreases of E93 expression in the embryo of Odonata, Thysanoptera, and different groups of Hemiptera Sternorrhyncha would have allowed the development of modified juvenile stages adapted to specific ecophysiological conditions.
0

Zelda and the evolution of insect metamorphosis

Alba Ventos‐Alfonso et al.Jul 12, 2018
In the Endopterygote Drosophila melanogaster, Zelda is a key activator of the zygotic genome during the maternal-to-zygotic transition (MZT). Zelda binds cis-regulatory elements (TAGteam heptamers), and makes chromatin accessible for gene transcription. Recently, Zelda has been studied in two other Endopterygotes: Apis mellifera and Tribolium castaneum, and the Paraneopteran Rhodnius prolixus. We have studied Zelda in the cockroach Blattella germanica, a hemimetabolan, short germ-band, and Polyneopteran species. Zelda protein of B. germanica has the complete set of functional domains, which is typical of lower insects. The TAGteam heptamers of D. melanogaster have been found in the B. germanica genome, and the canonical one, CAGGTAG, is present at a similar relative number in the genome of these two species and in the genome of other insects, suggesting that, although within certain evolutionary constraints, the genome admits as many CAGGTAG motifs as its length allows. Zelda-depleted embryos of B. germanica show defects involving the blastoderm formation and the abdomen development and have genes contributing to these processes down-regulated. We conclude that in B. germanica Zelda strictly activates the zygotic genome, within the MZT, a role conserved in more derived Endopterygote insects. In B. germanica, Zelda is expressed during MZT, whereas in D. melanogaster and T. castaneum it is expressed well beyond this transition. Moreover, in these species and A. mellifera, Zelda has functions even in postembryonic development. The expansion of Zelda expression and functions beyond the MZT in holometabolan species might have been instrumental for the evolutionary transition from hemimetaboly to holometaboly. In particular, the expression of Zelda beyond the MZT during embryogenesis might have allowed building the morphologically divergent holometabolan larva.
Load More