SP
Savvas Papacostas
Author with expertise in Neuronal Oscillations in Cortical Networks
Cyprus Institute of Neurology and Genetics, University of Nicosia, Hertie Institute for Clinical Brain Research
+ 7 more
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
22
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multi-scale periodicities in the functional brain networks of patients with epilepsy and their effect on seizure detection

Georgios Mitsis et al.May 7, 2020
+3
M
M
G
The task of automated epileptic seizure detection and prediction, by using non-invasive measurements such as scalp EEG signals or invasive, intracranial recordings, has been at the heart of epilepsy studies for at least three decades. By far, the most common approach for tackling this problem is to examine short-length recordings around the occurrence of a seizure - normally ranging between several seconds and up to a few minutes before and after the epileptic event - and identify any significant changes that occur before or during the event. An inherent assumption in these studies is the presence of a relatively constant EEG activity in the interictal period, which is presumably interrupted by the occurrence of a seizure. Here, we examine this assumption by using long-duration scalp EEG data (ranging between 21 and 94 hours) in patients with epilepsy, based on which we construct functional brain networks. Our results suggest that not only these networks vary over time, but they do so in a periodic fashion, exhibiting multiple periods ranging between around one and 24 hours. The effects of seizure onset on the functional brain network properties were found to be considerably smaller in magnitude compared to the changes due to the inherent periodic cycles of these networks. Importantly, the properties of the identified network periodic components (instantaneous phase, particularly that of short-term periodicities around 3 and 5 hrs) were found to be strongly correlated to seizure onset. These correlations were found to be largely absent between EEG signal periodicities and seizure onset, suggesting that higher specificity may be achieved by using network-based metrics. In turn, this suggests that to achieve more robust seizure detection and/or prediction, the evolution of the underlying longer term functional brain network periodic variations should be taken into account.
0
0
Save
0

Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals

Yen‐Chen Feng et al.May 6, 2020
+230
L
D
Y
Sequencing-based studies have identified novel risk genes for rare, severe epilepsies and revealed a role of rare deleterious variation in common epilepsies. To identify the shared and distinct ultra-rare genetic risk factors for rare and common epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,364 controls of European ancestry. We focused on three phenotypic groups; the rare but severe developmental and epileptic encephalopathies (DEE), and the commoner phenotypes of genetic generalized epilepsy (GGE) and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy, with the strongest enrichment seen in DEE and the least in NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, while no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEE and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the top associations, including CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study confirms a convergence in the genetics of common and rare epilepsies associated with ultra-rare coding variation and highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology in the largest epilepsy WES study to date.