ML
Marvin Lambertus
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
233
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages is necessary for functional spinal cord regeneration in zebrafish

Themistoklis Tsarouchas et al.May 28, 2018
Spinal cord injury leads to a massive response of innate immune cells (microglia, macrophages, neutrophils) both, in non-regenerating mammals and in successfully regenerating zebrafish, but the role of these immune cells in functional spinal cord regeneration in zebrafish has not been addressed. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in larval zebrafish. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary and sufficient for full regeneration. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Il-1β and Tnf-α. Decreasing Il-1β levels or number of Il-1β+ neutrophils rescues functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1β function impairs regeneration in irf8 and wildtype animals. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. Hence, inflammation is tightly and dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish.
0

High‐intensity interval exercise is more efficient than medium intensity exercise at inducing neurogenesis

Marvin Lambertus et al.Nov 23, 2024
Abstract The neurogenic potential of the brain decreases during ageing, whereas the risk of neurodegenerative diseases and stroke rises. This creates a mismatch between the rate of neuron loss and the brain's capacity for replacement. Adult neurogenesis primarily occurs in the subgranular zone (SGZ) and the ventricular‐subventricular zone (V‐SVZ). Exercise enhances SGZ neurogenesis, and we previously showed that V‐SVZ neurogenesis is induced by exercise via activation of the lactate receptor HCA 1 . Here, we investigated how high‐intensity interval training (HIIT) and medium‐intensity interval training (MIIT) affect neurogenesis in these niches. Wild‐type (WT) and HCA 1 knockout (KO) mice were randomized to sedentary, HIIT or MIIT ( n = 5–8 per group) for 3 weeks. In the SGZ, HIIT increased the density of doublecortin (DCX)‐positive cells in WT mice by 85% (5.77±1.76 vs . 3.12±1.54 cells/100 µm, P = 0.013) and KO mice (67% increase; 7.91±2.92 vs . 4.73±1.63 cells/100 µm, P = 0.004). MIIT did not alter the density of DCX‐positive cells in either genotype. HIIT increased the density of Ki‐67‐positive cells only in KO mice ( P = 0.038), whereas no differences in nestin‐positive cells were observed. In the V‐SVZ, HIIT increased the density of DCX‐positive cells in WT mice by 155% (117.79±39.72 vs . 46.25±19.96 cells/100 µm, P < 0.001) and MIIT increased the density of DCX‐positive cells by 80% (83.26±39.48 vs . 46.25±19.96 cells/100µm, P = 0.027). No exercise‐induced changes were observed in KO mice. Similar patterns were noted for Ki‐67 positive and DCX/Ki‐67 double‐positive cells in the V‐SVZ. These findings suggest that HIIT enhances neurogenesis more robustly than MIIT in both niches, with HCA 1 playing a crucial role in V‐SVZ neurogenesis. image Key points The neurogenic potential of the brain decreases with age, whereas the risk of neurodegenerative diseases and stroke increases, highlighting a mismatch between neuronal loss and replacement capacity. Exercise enhances neurogenesis in both the subgranular zone and the ventricular‐subventricular zone. High‐intensity interval exercise is more effective than medium‐intensity interval exercise at promoting neurogenesis in both the subgranular zone and the ventricular‐subventricular zone of wild‐type mice. The enhancement of neurogenesis in the ventricular‐subventricular zone is dependent on the activation of the HCA 1 receptor, as evidenced by the ability of medium‐ and high‐intensity interval exercise to induce neurogenesis in wild‐type mice and the lack of this effect in HCA 1 knockout mice. By contrast, neurogenesis in the subgranular zone is independent on the activation of the HCA 1 receptor, highlighting that neurogenesis in the two major neurogenic niches are regulated differently.