Background & Aim: Chemotherapy drugs harm rapidly dividing normal healthy cells such as those lining the gastrointestinal tract, causing morbidity and mortality that complicates medical treatment modalities. Growth Factor-Independent 1 (GFI1) is a zinc finger transcriptional repressor implicated in the differentiation of secretory precursors into Paneth and goblet cells in the intestinal epithelium. We hypothesize that stimulating the reversion of Gfi1+ secretory cells into stem cells will improve intestinal epithelial regeneration and mitigate injury. Methods: Gfi1 reporter mice (Gfi1cre/+; ROSA26LSL-YFP) were treated with Doxorubicin, radiation, anti-CD3 antibody, and rotavirus to induce intestinal injury. Mice and intestinal organoids (enteroids) were used to investigate cellular repair mechanisms following injury. Results: Under homeostatic conditions, Gfi1-lineage cells are Paneth and goblet cells, which were non-proliferative and not part of the stem cell pool. After injury, Gfi1+ secretory cells can re-enter the cell cycle and give rise to all cell lineages of the intestinal epithelium including stem cells. Reversion of Gfi1-lineage cells was observed in other injury model systems, including irradiation and anti-CD3 treatment, but not in ISC-sparing rotavirus infection. Our results also demonstrated that PI3kinase/AKT activation improved cell survival, and elevated WNT signaling increased the efficiency of Gfi1+ cell reversion upon injury. Conclusions: These findings indicate that Gfi1+ secretory cells display plasticity and reacquire stemness following severe damage. Moreover, PI3kinase/AKT and WNT are key regulators involved in injury-induced regeneration. Our studies identified potential therapeutic intervention strategies to mitigate the adverse effects of chemotherapy-induced damage to normal tissues and improve the overall effectiveness of cancer chemotherapy.