ABSTRACT Anemonefish are an emerging group of model organisms for studying genetic, ecological, evolutionary, and developmental traits of coral reef fish. The yellowtail clownfish Amphiprion clarkii possesses species-specific characteristics such as inter-species co-habitation, high intra-species color variation, no anemone specificity, and a broad geographic distribution, that can increase our understanding of anemonefish evolutionary history, behavioral strategies, fish-anemone symbiosis, and color pattern evolution. Despite its position as an emerging model species, the genome of A. clarkii is yet to be published. Using PacBio long-read sequencing and Hi-C chromatin capture technology, we generated a high-quality chromosome-scale genome assembly initially comprised of 1,840 contigs with an N50 of 1,203,211 bp. These contigs were successfully anchored into 24 chromosomes of 843,582,782 bp and annotated with 25,050 protein-coding genes encompassing 97.0 % of conserved actinopterygian genes, making the quality and completeness of this genome the highest amongst all published anemonefish genomes to date. Transcriptomic analysis identified tissue-specific gene expression patterns, with the brain and optic lobe having the largest number of expressed genes. Further analyses revealed higher copy numbers of erbb3b (a gene involved in melanophore development) in A. clarkii compared to other anemonefish, thus suggesting a possible link between erbb3b and the natural melanism polymorphism observed in A. clarkii . The publication of this high-quality genome, along with A. clarkii ’s many unique traits, position this species as an ideal model organism for addressing scientific questions across a range of disciplines.