Signal transduction deregulation is a hallmark of many complex diseases, including Multiple Sclerosis (MS). Here, we performed ex vivo multiplexed phosphoproteomic assays upon perturbations with multiple drugs and ligands in primary immune cells from 169 MS patients and matched healthy controls. Patients were either untreated or treated with fingolimod, natalizumab, interferon-β, glatiramer acetate or the experimental therapy epigallocatechin gallate (EGCG). We generated for each donor a dynamic logic model by fitting a bespoke literature-derived network of MS-related pathways to the perturbation data. Analysis of the models uncovered features of healthy-, disease- and drug-specific signaling networks. We developed an approach based on network topology to identify deregulated interactions whose activity could be reverted to a "healthy-like" status by combination therapy. We predicted several combinations with approved MS drugs. Specifically, TAK1 kinase, involved in TGF-β, Toll-like receptor, B-cell receptor and response to inflammation pathways were found to be highly deregulated and co-druggable with all MS drugs studied. One of these predicted combinations, fingolimod with a TAK1 inhibitor, was validated in an animal model of MS. Our approach based on donor-specific signaling networks enables prediction of targets for combination therapy for MS and other complex diseases.