KD
Kuaikuai Duan
Author with expertise in Blind Source Separation and Independent Component Analysis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
12
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Differences in regional brain structure in toddlers with autism are related to future language outcomes

Kuaikuai Duan et al.Jun 13, 2024
Language and social symptoms improve with age in some autistic toddlers, but not in others, and such outcome differences are not clearly predictable from clinical scores alone. Here we aim to identify early-age brain alterations in autism that are prognostic of future language ability. Leveraging 372 longitudinal structural MRI scans from 166 autistic toddlers and 109 typical toddlers and controlling for brain size, we find that, compared to typical toddlers, autistic toddlers show differentially larger or thicker temporal and fusiform regions; smaller or thinner inferior frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most differences are replicated in an independent cohort of 75 toddlers. These brain alterations improve accuracy for predicting language outcome at 6-month follow-up beyond intake clinical and demographic variables. Temporal, fusiform, and inferior frontal alterations are related to autism symptom severity and cognitive impairments at early intake ages. Among autistic toddlers, brain alterations in social, language and face processing areas enhance the prediction of the child's future language ability.
0
Citation4
0
Save
0

Sparse parallel independent component analysis and its application to identify linked genomic and gray matter alterations underlying working memory impairment in attention-deficit/hyperactivity disorder

Kuaikuai Duan et al.Jul 12, 2020
Abstract Most psychiatric disorders are highly heritable and associated with altered brain structural and functional patterns. Data fusion analyses on brain imaging and genetics, one of which is parallel independent component analysis (pICA), enable the link of genomic factors to brain patterns. Due to the small to modest effect sizes of common genetic variants in psychiatric disorders, it is usually challenging to reliably separate disorder-related genetic factors from the rest of the genome with the typical size of clinical samples. To alleviate this problem, we propose sparse parallel independent component analysis (spICA) to leverage the sparsity of individual genomic sources. The sparsity is enforced by performing Hoyer projection on the estimated independent sources. Simulation results demonstrate that the proposed spICA yields improved detection of independent sources and imaging-genomic associations compared to pICA. We applied spICA to gray matter volume (GMV) and single nucleotide polymorphism (SNP) data of 341 unrelated adults, including 127 controls, 167 attention-deficit/hyperactivity disorder (ADHD) cases, and 47 unaffected siblings. We identified one SNP source significantly and positively associated with a GMV source in superior/middle frontal regions. This association was replicated with a smaller effect size in 317 adolescents from ADHD families, including 188 individuals with ADHD and 129 unaffected siblings. The association was found to be more significant in ADHD families than controls, and stronger in adults and older adolescents than younger ones. The identified GMV source in superior/middle frontal regions was not correlated with head motion parameters and its loadings (expression levels) were reduced in adolescent (but not adult) individuals with ADHD. This GMV source was associated with working memory deficits in both adult and adolescent individuals with ADHD. The identified SNP component highlights SNPs in genes encoding long non-coding RNAs and SNPs in genes MEF2C, CADM2, and CADPS2, which have known functions relevant for modulating neuronal substrates underlying high-level cognition in ADHD.
0
Citation3
0
Save
0

A Novel Registration Framework for Aligning Longitudinal Infant Brain Tensor Images

Kuaikuai Duan et al.Jul 16, 2024
Registering longitudinal infant brain images is challenging, as the infant brain undergoes rapid changes in size, shape and tissue contrast in the first months and years of life. Diffusion tensor images (DTI) have relatively consistent tissue properties over the course of infancy compared to commonly used T1 or T2- weighted images, presenting great potential for infant brain registration. Moreover, groupwise registration has been widely used in infant neuroimaging studies to reduce bias introduced by predefined atlases that may not be well representative of samples under study. To date, however, no methods have been developed for groupwise registration of tensor-based images. Here, we propose a novel registration approach to groupwise align longitudinal infant DTI images to a sample-specific common space. Longitudinal infant DTI images are first clustered into more homogenous subgroups based on image similarity using Louvain clustering. DTI scans are then aligned within each subgroup using standard tensor-based registration. The resulting images from all subgroups are then further aligned onto a sample-specific common space. Results show that our approach significantly improved registration accuracy both globally and locally compared to standard tensor-based registration and standard fractional anisotropy-based registration. Additionally, clustering based on image similarity yielded significantly higher registration accuracy compared to no clustering, but comparable registration accuracy compared to clustering based on chronological age. By registering images groupwise to reduce registration bias and capitalizing on the consistency of features in tensor maps across early infancy, our groupwise registration framework facilitates more accurate alignment of longitudinal infant brain images.
0

Structural Brain Alterations and Their Association with Cognitive Function and Symptoms in Attention-Deficit/Hyperactivity Disorder Families

Wenhao Jiang et al.Dec 4, 2019
Gray matter disruptions have been found consistently in Attention-deficit/Hyperactivity Disorder (ADHD). The organization of these alterations into brain structural networks remains largely unexplored. We investigated 508 participants (281 males) with ADHD (N = 210), their unaffected siblings (N = 108), individuals with subthreshold ADHD (N = 49), and unrelated healthy controls (N = 141) with an age range from 7 to 18 years old from 336 families in the Dutch NeuroIMAGE project. Source based morphometry was used to examine structural brain network alterations and their association with symptoms and cognitive performance. Two networks showed significant reductions in individuals with ADHD compared to unrelated healthy controls after False Discovery Rate correction. Component A, mainly located in bilateral Crus I, showed a case/control difference with sub-clinical cases being intermediate between cases and controls. The unaffected siblings were similar to controls. After correcting for IQ and medication status, component A showed a negative correlation with inattention symptoms across the entire sample. Component B included a maximum cluster in the bilateral insula, where unaffected siblings, similar to cases, showed significantly reduced loadings compared to controls; but no relationship with individual symptoms or cognitive measures was found for component B. This multivariate approach suggests that areas reflecting genetic liability within ADHD are partly separate from those areas modulating symptom severity.
0

aNy-way Independent Component Analysis

Kuaikuai Duan et al.Feb 3, 2020
Multimodal data fusion is a topic of great interest. Several fusion methods have been proposed to investigate coherent patterns and corresponding linkages across modalities, such as joint independent component analysis (jICA), multiset canonical correlation analysis (mCCA), mCCA+jICA, and parallel ICA. JICA exploits source independence but assumes shared loading parameters. MCCA maximizes correlation linkage across modalities directly but is limited to orthogonal features. While there is no theoretical limit to the number of modalities analyzed together by jICA, mCCA, or the two-step approach mCCA+jICA, these approaches require the same number of sources/components for all modalities. Parallel ICA, on the other hand, simultaneously maximizes correlation between modalities and independence of sources, while allowing different number of sources for each modality. However, only a very limited number of modalities and linkage pairs can be optimized. To overcome these limitations, we propose aNy-way ICA, a new model to simultaneously maximize the independence of sources and correlations across modalities. ANy-way ICA combines infomax ICA and Gaussian independent vector analysis (IVA-G) via a shared weight matrix model without orthogonality constraints. Simulation results demonstrate that aNy-way ICA can accurately recover sources and loadings, as well as the true covariance patterns, whether different modalities have the same or different number of sources. Moreover, aNy-way ICA outperforms mCCA and mCCA+jICA in terms of source and loading recovery accuracy, especially under noisy conditions.