PS
Pooja Suresh
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
1
h-index:
9
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The Astrin-SKAP Complex Reduces Friction at the Kinetochore-Microtubule Interface

Miquel Rosas-Salvans et al.Nov 30, 2021
ABSTRACT The kinetochore links chromosomes to spindle microtubules to drive chromosome segregation at cell division. While we know nearly all mammalian kinetochore proteins, how these give rise to the strong yet dynamic microtubule attachments required for function remains poorly understood. Here, we focus on the Astrin-SKAP complex, which localizes to bioriented kinetochores and is essential for chromosome segregation, but whose mechanical role is unclear. Live imaging reveals that SKAP depletion dampens movement and decreases coordination of metaphase sister kinetochores, and increases tension between them. Using laser ablation to isolate kinetochores bound to polymerizing vs depolymerizing microtubules, we show that without SKAP kinetochores move slower on both polymerizing and depolymerizing microtubules, and that more force is needed to rescue microtubules to polymerize. Thus, in contrast to previously described kinetochore proteins that increase grip on microtubules under force, Astrin-SKAP reduces grip, increasing attachment dynamics and force responsiveness and reducing friction. Together, our findings suggest a model where the Astrin-SKAP complex effectively “lubricates” correct, bioriented attachments to help preserve them.
1
Citation1
0
Save
1

A semiconductor 96-microplate platform for electrical-imaging based high-throughput phenotypic screening

Shalaka Chitale et al.Jun 5, 2023
Abstract Profiling compounds and genetic perturbations via high-content imaging has become increasingly popular for drug discovery, but the technique is limited to endpoint images of fixed cells. In contrast, electronic-based devices offer label-free, functional information of live cells, yet current approaches suffer from low-spatial resolution or single-well throughput. Here, we report a semiconductor 96-microplate platform designed for high-resolution real-time impedance “imaging” at scale. Each well features 4,096 electrodes at 25 µm spatial resolution while a miniaturized data interface allows 8× parallel plate operation (768 total wells) within each incubator for enhanced throughputs. New electric field-based, multi-frequency measurement techniques capture >20 parameter images including tissue barrier, cell-surface attachment, cell flatness, and motility every 15 min throughout experiments. Using these real-time readouts, we characterized 16 cell types, ranging from primary epithelial to suspension, and quantified heterogeneity in mixed epithelial and mesenchymal co-cultures. A proof-of-concept screen of 904 diverse compounds using 13 semiconductor microplates demonstrates the platform’s capability for mechanism of action (MOA) profiling with 25 distinct responses identified. The scalability of the semiconductor platform combined with the translatability of the high dimensional live-cell functional parameters expands high-throughput MOA profiling and phenotypic drug discovery applications.
0

Individual kinetochore-fibers locally dissipate force to maintain robust mammalian spindle structure

Alexandra Long et al.Nov 18, 2019
At cell division, the mammalian kinetochore binds many spindle microtubules that make up the kinetochore-fiber. To segregate chromosomes, the kinetochore-fiber must be dynamic and generate and respond to force. Yet, how it remodels under force remains poorly understood. Kinetochore-fibers cannot be reconstituted in vitro, and exerting controlled forces in vivo remains challenging. Here, we use microneedles to pull on mammalian kinetochore-fibers and probe how sustained force regulates their dynamics and structure. We show that force lengthens kinetochore-fibers by persistently favoring plus-end polymerization, not by increasing polymerization rate. We demonstrate that force suppresses depolymerization at both plus- and minus-ends, rather than sliding microtubules within the kinetochore-fiber. Finally, we observe that kinetochore-fibers break but do not detach from kinetochores or poles. Together, this work suggests an engineering principle for spindle structural homeostasis: different physical mechanisms of local force dissipation by the k-fiber limit force transmission to preserve robust spindle structure. These findings may inform how other dynamic, force-generating cellular machines achieve mechanical robustness.
0

Microneedle manipulation of the mammalian spindle reveals specialized, short-lived reinforcement near chromosomes

Pooja Suresh et al.Nov 15, 2019
The spindle generates force to segregate chromosomes at cell division. In mammalian cells, kinetochore-fibers connect chromosomes to the spindle. The dynamic spindle anchors kinetochore-fibers in space and time to coordinate chromosome movement. Yet, how it does so remains poorly understood as we lack tools to directly challenge this anchorage. Here, we adapt microneedle manipulation to exert local forces on the spindle with spatiotemporal control. Pulling on kinetochore-fibers reveals that the spindle retains local architecture in its center on the seconds timescale. Upon pulling, sister, but not neighbor, kinetochore-fibers remain tightly coupled, restricting chromosome stretching. Further, pulled kinetochore-fibers freely pivot around poles but not around chromosomes, retaining their orientation within 3 μm of chromosomes. This local reinforcement has a 20 s lifetime, and requires the microtubule crosslinker PRC1. Together, these observations indicate short-lived, specialized reinforcement of the kinetochore-fiber in the spindle center. This could help the spindle protect local structure near chromosomes from transient forces while allowing its remodeling over longer timescales, thereby supporting robust chromosome attachments and movements.
0

Flex ddG: Rosetta ensemble-based estimation of changes in protein-protein binding affinity upon mutation

Kyle Barlow et al.Nov 17, 2017
Computationally modeling changes in binding free energies upon mutation (interface ΔΔG) allows large-scale prediction and perturbation of protein-protein interactions. Additionally, methods that consider and sample relevant conformational plasticity should be able to achieve higher prediction accuracy over methods that do not. To test this hypothesis, we developed a method within the Rosetta macromolecular modeling suite (flex ddG) that samples conformational diversity using "backrub" to generate an ensemble of models, then applying torsion minimization, side chain repacking and averaging across this ensemble to estimate interface ΔΔG values. We tested our method on a curated benchmark set of 1240 mutants, and found the method outperformed existing methods that sampled conformational space to a lesser degree. We observed considerable improvements with flex ddG over existing methods on the subset of small side chain to large side chain mutations, as well as for multiple simultaneous non-alanine mutations, stabilizing mutations, and mutations in antibody-antigen interfaces. Finally, we applied a generalized additive model (GAM) approach to the Rosetta energy function; the resulting non-linear reweighting model improved agreement with experimentally determined interface ΔΔG values, but also highlights the necessity of future energy function improvements.
0

qFit-ligand reveals widespread conformational heterogeneity of drug-like molecules in X-ray electron density maps

Gydo Zundert et al.Jan 25, 2018
Proteins and ligands sample a conformational ensemble that governs molecular recognition, activity, and dissociation. In structure-based drug design, access to this conformational ensemble is critical to understand the balance between entropy and enthalpy in lead optimization. However, ligand conformational heterogeneity is currently severely underreported in crystal structures in the Protein Data Bank, owing in part to a lack of automated and unbiased procedures to model an ensemble of protein-ligand states into X-ray data. Here, we designed a computational method, qFit-ligand, to automatically resolve conformationally averaged ligand heterogeneity in crystal structures, and applied it to a large set of protein receptor-ligand complexes. We found that up to 29% of a dataset of protein crystal structures bound with drug-like molecules present evidence of unmodeled, averaged, relatively isoenergetic conformations in ligand-receptor interactions. In many retrospective cases, these alternate conformations were adventitiously exploited to guide compound design, resulting in improved potency or selectivity. Combining qFit-ligand with high-throughput screening or multi-temperature crystallography could therefore augment the structure-based drug design toolbox.
10

Modeling and mechanical perturbations reveal how spatially regulated anchorage gives rise to spatially distinct mechanics across the mammalian spindle

Pooja Suresh et al.Apr 8, 2022
ABSTRACT During cell division, the spindle generates force to move chromosomes. In mammals, microtubule bundles called kinetochore-fibers (k-fibers) attach to and segregate chromosomes. To do so, k-fibers must be robustly anchored to the dynamic spindle. We previously developed microneedle manipulation to mechanically challenge k-fiber anchorage, and observed spatially distinct response features revealing the presence of heterogeneous anchorage (Suresh et al. 2020). How anchorage is precisely spatially regulated, and what forces are necessary and sufficient to recapitulate the k-fiber’s response to force remain unclear. Here, we develop a coarse-grained k-fiber model and combine with manipulation experiments to infer underlying anchorage using shape analysis. By systematically testing different anchorage schemes, we find that forces solely at k-fiber ends are sufficient to recapitulate unmanipulated k-fiber shapes, but not manipulated ones for which lateral anchorage over a 3 μm length scale near chromosomes is also essential. Such anchorage robustly preserves k-fiber orientation near chromosomes while allowing pivoting around poles. Anchorage over a shorter length scale cannot robustly restrict pivoting near chromosomes, while anchorage throughout the spindle obstructs pivoting at poles. Together, this work reveals how spatially regulated anchorage gives rise to spatially distinct mechanics in the mammalian spindle, which we propose are key for function.