ZC
Zhendong Cao
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
491
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment

Jonathan Beagan et al.May 23, 2017
CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D reconfiguration of fine-scale chromatin folding during early neural lineage commitment. Unexpectedly, we observe a sharp decrease in CTCF occupancy during the transition from naïve/primed pluripotency to multipotent primary neural progenitor cells (NPCs). Many pluripotency gene-enhancer interactions are anchored by CTCF, and its occupancy is lost in parallel with loop decommissioning during differentiation. Conversely, CTCF binding sites in NPCs are largely preexisting in pluripotent stem cells. Only a small number of CTCF sites arise de novo in NPCs. We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping interactions between NPC-specific genes and enhancers. Putative NPC-specific enhancers exhibit strong YY1 signal when engaged in 3D contacts and negligible YY1 signal when not in loops. Moreover, siRNA knockdown of Yy1 specifically disrupts interactions between key NPC enhancers and their target genes. YY1-mediated interactions between NPC regulatory elements are often nested within constitutive loops anchored by CTCF. Together, our results support a model in which YY1 acts as an architectural protein to connect developmentally regulated looping interactions; the location of YY1-mediated interactions may be demarcated in development by a preexisting topological framework created by constitutive CTCF-mediated interactions.
0
Citation287
0
Save
5

H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions

Yichao Cai et al.Jan 29, 2021
The mechanisms underlying gene repression and silencers are poorly understood. Here we investigate the hypothesis that H3K27me3-rich regions of the genome, defined from clusters of H3K27me3 peaks, may be used to identify silencers that can regulate gene expression via proximity or looping. We find that H3K27me3-rich regions are associated with chromatin interactions and interact preferentially with each other. H3K27me3-rich regions component removal at interaction anchors by CRISPR leads to upregulation of interacting target genes, altered H3K27me3 and H3K27ac levels at interacting regions, and altered chromatin interactions. Chromatin interactions did not change at regions with high H3K27me3, but regions with low H3K27me3 and high H3K27ac levels showed changes in chromatin interactions. Cells with H3K27me3-rich regions knockout also show changes in phenotype associated with cell identity, and altered xenograft tumor growth. Finally, we observe that H3K27me3-rich regions-associated genes and long-range chromatin interactions are susceptible to H3K27me3 depletion. Our results characterize H3K27me3-rich regions and their mechanisms of functioning via looping.
5
Citation201
0
Save
0

In vivoCRISPR screening identifies Fli1 as a transcriptional safeguard that restrains effector CD8 T cell differentiation during infection and cancer

Zeyu Chen et al.May 20, 2020
Summary Improving effector activity of antigen specific T cells is a major goal in cancer immunotherapy. Despite the identification of several effector T cell (T EFF )-driving transcription factors (TF), the transcriptional coordination of T EFF biology remains poorly understood. We developed an in vivo T cell CRISPR screening platform and identified a novel mechanism restraining T EFF biology through the ETS family TF, Fli1. Genetic deletion of Fli1 enhanced T EFF responses without compromising memory or exhaustion precursors. Fli1 restrained T EFF lineage differentiation by binding to cis -regulatory elements of effector-associated genes. Loss of Fli1 increased chromatin accessibility at ETS:RUNX motifs allowing more efficient Runx3-driven T EFF biology. CD8 T cells lacking Fli1 provided substantially better protection against multiple infections and tumors. These data indicate that Fli1 safeguards the developing CD8 T cell transcriptional landscape from excessive ETS:RUNX-driven T EFF cell differentiation. Moreover, genetic deletion of Fli1 improves T EFF differentiation and protective immunity in infections and cancer.
0
Citation3
0
Save
24

ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination deficient cells

Priyanka Verma et al.Dec 16, 2020
Abstract The response to Poly (ADP-ribose) polymerase inhibitors (PARPi) is dictated by homologous recombination (HR) DNA repair mechanisms and the abundance of lesions that trap PARP enzymes on chromatin. It remains unclear, however, if the established role of PARP in promoting chromatin accessibility impacts viability in these settings. Using a CRISPR based screen, we identify the PAR-binding Snf2-like ATPase, ALC1/CHD1L, as a key determinant of PARPi toxicity in HR-deficient cells. ALC1 loss reduced viability of BRCA mutant cells and enhanced their sensitivity to PARPi by up to 250-fold, while overcoming several known resistance mechanisms. ALC1 loss was not epistatic to other repair pathways that execute the PARPi response. Instead, ALC1 deficiency reduced chromatin accessibility concomitant with a decrease in the association of repair factors. This resulted in an accumulation of replication associated DNA damage and a reliance on HR. These findings establish PAR-dependent chromatin remodeling as a mechanistically distinct aspect of PARPi responses, implicating ALC1 inhibition as a new approach to overcome therapeutic resistance in HR-deficient cancers.
0

5C-ID: Increased resolution Chromosome-Conformation-Capture-Carbon-Copy with in situ 3C and double alternating primer design

Ji Kim et al.Jan 10, 2018
Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs and looping interactions. Currently, there is a great need to evaluate the link between chromatin topology and genome function across many biological conditions and genetic perturbations. Hi-C generates high quality, high resolution maps of looping interactions genome-wide, but is intractable for high-throughput screening of loops across conditions due to the requirement of an enormous number of reads (>6 Billion) per library. Here, we describe 5C-ID, an updated version of Chromosome-Conformation-Capture-Carbon-Copy (5C) with restriction digest and ligation performed in the nucleus (in situ Chromosome-Conformation-Capture (3C)) and ligation-mediated amplification performed with a new double alternating design. 5C-ID reduces spatial noise and enables higher resolution 3D genome folding maps than canonical 5C, allowing for a marked improvement in sensitivity and specificity of loop detection. 5C-ID enables the creation of high-resolution, high-coverage maps of chromatin loops in up to a 30 Megabase subset of the genome at a fraction of the cost of Hi-C.