JY
John Young
Author with expertise in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
5,338
h-index:
54
/
i10-index:
116
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Human host factors required for influenza virus replication

Renate König et al.Dec 21, 2009
Two genome-wide RNA interference screens published in this issue identify human host factors required for influenza A virus replication in lung epithelia cell lines. König et al. identify 295 host genes required for influenza replication. Of those, 219 are required for efficient wild-type virus growth, and 23 are required for viral entry. Karlas et al. report the discovery of 287 host genes influencing virus replication. An independent assay confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. These studies should provide a number of potential targets for host factor-directed antivirals for treatment of influenza viral infection. The small coding capacity of the influenza A virus demands that the virus use the host cellular machinery for many aspects of its life cycle. An integrated systems approach, based on genome-wide RNA interference screening, is now used to identify 295 cellular cofactors required for early-stage influenza virus replication. Knowledge of these host cell requirements provides further targets that could be pursued for antiviral drug development. Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle1. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host–pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-β. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIβ (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.
0

Global landscape of HIV–human protein complexes

Stefanie Jäger et al.Dec 20, 2011
Affinity tagging, mass spectroscopy and a tailor-made scoring system are used to identify 497 high-confidence interactions between human proteins and human immunodeficiency virus proteins. Nevan Krogan and colleagues report a global analysis of human proteins that interact with the 18 proteins expressed by HIV-1. Using affinity tagging and mass spectrometry combined with a new quantitative scoring system and a high level of validation by co-immunoprecipitation, they identify 497 HIV–human protein–protein interactions, providing new insights into host proteins that could play a part in HIV replication. Functional validation of a few of these hits revealed a number of new factors that inhibit HIV replication, including EIF3d, which is cleaved by HIV protease, and DESP and HEAT1, which interact with integrase and inhibit integration. Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host’s cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry1,2,3 to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV–human protein–protein interactions involving 435 individual human proteins, with ∼40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.
0
Citation699
0
Save
0

Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor

Heather Scobie et al.Apr 16, 2003
Bacillus anthracis secretes two bipartite toxins thought to be involved in anthrax pathogenesis and resulting death of the host. The current model for intoxication is that protective antigen (PA) toxin subunits bind a single group of cell-surface anthrax toxin receptors (ATRs), encoded by the tumor endothelial marker 8 ( TEM8 ) gene. The ATR/TEM8-PA interaction is mediated by the receptor's extracellular domain related to von Willebrand factor type A or integrin inserted domains (VWA/I domains). A metal ion-dependent adhesion site (MIDAS) located within this domain of the ATR/TEM8 protein chelates a divalent cation critical for PA binding. In this report, we identify a second PA receptor encoded by capillary morphogenesis gene 2 ( CMG2 ), which has 60% amino acid identity to ATR/TEM8 within the VWA/I domain, as well as a conserved MIDAS motif. A recombinant CMG2 protein bound PA and mediated toxin internalization when expressed on receptor-deficient cells. Binding between the CMG2 VWA/I domain and PA was shown to be direct and metal-dependent, although the cation specificity of this interaction is different than that observed with ATR/TEM8. Northern blot analysis revealed that CMG2 is widely expressed in human tissues, indicating that this receptor is likely to be relevant for disease pathogenesis. Finally, a soluble version of the CMG2 VWA/I domain inhibited intoxication of cells expressing endogenous toxin receptors when it was added to PA at a 3:1 ratio. These studies distinguish CMG2 as a second anthrax toxin receptor and identify a potent antitoxin that may prove useful for the treatment of anthrax.
0
Citation612
0
Save
0

Global post-translational modification profiling of HIV-1-infected cells reveals mechanisms of host cellular pathway remodeling

Jeffrey Johnson et al.Jan 7, 2020
Viruses must effectively remodel host cellular pathways to replicate and evade immune defenses, and they must do so with limited genomic coding capacity. Targeting post-translational modification (PTM) pathways provides a mechanism by which viruses can broadly and rapidly transform a hostile host environment into a hospitable one. We used quantitative proteomics to measure changes in two PTM types – phosphorylation and ubiquitination – in response to HIV-1 infection with viruses harboring targeted deletions of a subset of HIV-1 genes. PTM analysis revealed a requirement for Aurora kinase A activity in HIV-1 infection and furthermore revealed that AMP-activated kinase activity is modulated during infection via HIV-1 Vif-mediated degradation of B56-containing protein phosphatase 2A (PP2A). Finally, we demonstrated that the Cullin4A-DDB1-DCAF1 E3 ubiquitin ligase ubiquitinates histone H1 somatic isoforms and that HIV-1 Vpr inhibits this process, leading to defects in DNA repair. Thus, global PTM profiling of infected cells serves as an effective tool for uncovering specific mechanisms of host pathway modulation.