MJ
Mark Jedrychowski
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
34
(88% Open Access)
Cited by:
21,699
h-index:
61
/
i10-index:
100
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1

Evanna Mills et al.Mar 27, 2018
WebTreatment of lipopolysaccharide-activated macrophages with the cell-permeable itaconate derivative 4-octyl itaconate activates the anti-inflammatory transcription factor Nrf2 by alkylating key cysteine residues on the KEAP1 protein. Macrophages are white blood cells that recognize and destroy invading bacterial pathogens, and later tone down inflammation to enable tissue repair. The endogenous metabolite itaconate inhibits a number of inflammatory cytokines during macrophage activation. Luke O'Neill and colleagues investigate the mechanism underlying this process. Treatment of lipopolysaccharide (LPS)-activated macrophages with the cell-permeable itaconate derivative 4-octyl itaconate activates the anti-oxidant and anti-inflammatory transcription factor Nrf2. This activation occurs via alkylation of key cysteine residues on the KEAP1 protein, which blocks KEAP1-dependent proteolysis of Nrf2. Pre-treating mouse models of LPS with the itaconate derivative activates Nrf2 and prolongs the survival of the animals after a lethal dose of LPS. The authors suggest that itaconate derivatives may prove useful in the treatment of inflammatory diseases. The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood1,2,3. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.
0

MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes

Graeme McAlister et al.Jun 13, 2014
Multiplexed quantitation via isobaric chemical tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ)) has the potential to revolutionize quantitative proteomics. However, until recently the utility of these tags was questionable due to reporter ion ratio distortion resulting from fragmentation of coisolated interfering species. These interfering signals can be negated through additional gas-phase manipulations (e.g., MS/MS/MS (MS3) and proton-transfer reactions (PTR)). These methods, however, have a significant sensitivity penalty. Using isolation waveforms with multiple frequency notches (i.e., synchronous precursor selection, SPS), we coisolated and cofragmented multiple MS2 fragment ions, thereby increasing the number of reporter ions in the MS3 spectrum 10-fold over the standard MS3 method (i.e., MultiNotch MS3). By increasing the reporter ion signals, this method improves the dynamic range of reporter ion quantitation, reduces reporter ion signal variance, and ultimately produces more high-quality quantitative measurements. To demonstrate utility, we analyzed biological triplicates of eight colon cancer cell lines using the MultiNotch MS3 method. Across all the replicates we quantified 8 378 proteins in union and 6 168 proteins in common. Taking into account that each of these quantified proteins contains eight distinct cell-line measurements, this data set encompasses 174 704 quantitative ratios each measured in triplicate across the biological replicates. Herein, we demonstrate that the MultiNotch MS3 method uniquely combines multiplexing capacity with quantitative sensitivity and accuracy, drastically increasing the informational value obtainable from proteomic experiments.
0

A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat

Lawrence Kazak et al.Oct 1, 2015
Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respiration in beige-fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial creatine kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole-body energy expenditure after administration of a β3-agonist and reduces beige and brown adipose metabolic rate. Genes of creatine metabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis.PaperClip/cms/asset/be15c921-205b-49cd-879c-785bf20b4a03/mmc5.mp3Loading ...(mp3, 3.2 MB) Download audio
0
Citation644
0
Save
Load More