SB
Syed Bukhari
Author with expertise in Computational Methods in Drug Discovery
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
503
h-index:
23
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists

Muhammad Khan et al.Aug 6, 2020
Manual identification of brain tumors is an error-prone and tedious process for radiologists; therefore, it is crucial to adopt an automated system. The binary classification process, such as malignant or benign is relatively trivial; whereas, the multimodal brain tumors classification (T1, T2, T1CE, and Flair) is a challenging task for radiologists. Here, we present an automated multimodal classification method using deep learning for brain tumor type classification. The proposed method consists of five core steps. In the first step, the linear contrast stretching is employed using edge-based histogram equalization and discrete cosine transform (DCT). In the second step, deep learning feature extraction is performed. By utilizing transfer learning, two pre-trained convolutional neural network (CNN) models, namely VGG16 and VGG19, were used for feature extraction. In the third step, a correntropy-based joint learning approach was implemented along with the extreme learning machine (ELM) for the selection of best features. In the fourth step, the partial least square (PLS)-based robust covariant features were fused in one matrix. The combined matrix was fed to ELM for final classification. The proposed method was validated on the BraTS datasets and an accuracy of 97.8%, 96.9%, 92.5% for BraTs2015, BraTs2017, and BraTs2018, respectively, was achieved.
0

A citrus fruits and leaves dataset for detection and classification of citrus diseases through machine learning

Hafiz Rauf et al.Aug 22, 2019
Plants are as vulnerable by diseases as animals. Citrus is a major plant grown mainly in the tropical areas of the world due to its richness in vitamin C and other important nutrients. The production of the citrus fruit has been widely affected by citrus diseases which ultimately degrades the fruit quality and causes financial loss to the growers. During the past decade, image processing and computer vision methods have been broadly adopted for the detection and classification of plant diseases. Early detection of diseases in citrus plants helps in preventing them to spread in the orchards which minimize the financial loss to the farmers. In this article, an image dataset citrus fruits, leaves, and stem is presented. The dataset holds citrus fruits and leaves images of healthy and infected plants with diseases such as Black spot, Canker, Scab, Greening, and Melanose. Most of the images were captured in December from the Orchards in Sargodha region of Pakistan when the fruit was about to ripen and maximum diseases were found on citrus plants. The dataset is hosted by the Department of Computer Science, University of Gujrat and acquired under the mutual cooperation of the University of Gujrat and the Citrus Research Center, Government of Punjab, Pakistan. The dataset would potentially be helpful to researchers who use machine learning and computer vision algorithms to develop computer applications to help farmers in early detection of plant diseases. The dataset is freely available at https://data.mendeley.com/datasets/3f83gxmv57/2.
0
Citation194
0
Save
0

D4: Deep Drug-drug interaction Discovery and Demystification

Adeeb Noor et al.Apr 9, 2020
Motivation:Drug-drug interactions (DDIs) are complex processes which may depend on many clinical and non-clinical factors. Identifying and distinguishing ways in which drugs interact remains a challenge. To minimize DDIs and to personalize treatment based on accurate stratification of patients, it is crucial that mechanisms of interaction can be identified. Most DDIs are a consequence of metabolic mechanisms of interaction, but DDIs with different mechanisms occur less frequently and are therefore more difficult to identify. Results:We developed a method (D4) for computationally identifying potential DDIs and determining whether they interact based on one of eleven mechanisms of interaction. D4 predicts DDIs and their mechanisms through features that are generated through a deep learning approach from phenotypic and functional knowledge about drugs, their side-effects and targets. Our findings indicate that our method is able to identify known DDIs with high accuracy and that D4 can determine mechanisms of interaction.We also identify numerous novel and potential DDIs for each mechanism of interaction and evaluate our predictions using DDIs from adverse event reporting systems. Availability:https://github.com/bio-ontology-research-group/D4 Contact:arnoor@kau.edu.sa and robert.hoehndorf@kaust.edu.### Competing Interest Statement