AV
Alberto Viera
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
3
h-index:
26
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides

Ana Gil-Fernández et al.Jun 29, 2020
ABSTRACT Sex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in most mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides , which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution. AUTHOR SUMMARY The early steps in the evolution of sex chromosomes are particularly difficult to study. Cessation of recombination around the sex-determining locus is thought to initiate the differentiation of sex chromosomes. Several studies have investigated this process from a genetic point of view. However, the cellular context in which recombination arrest occurs has not been considered as an important factor. In this report, we show that meiosis, the cellular division in which pairing and recombination between chromosomes takes place, can affect the incipient differentiation of X and Y chromosomes. Combining cytogenetic and genomic approaches, we found that in the African pygmy mouse Mus minutoides , which has recently undergone a sex chromosome-autosome fusion, synapsis and DNA repair dynamics are altered along the newly added region of the sex chromosomes, likely interfering with recombination and thus contributing to the genetic isolation of a large segment of the Y chromosome. Therefore, the cellular events that occur during meiosis are crucial to understand the very early stages of sex chromosome differentiation. This can help to explain why sex chromosomes evolve very fast in some organisms while in others they have barely changed for million years.
19
Citation2
0
Save
7

Haspin participates in Aurora phosphorylation at centromeres and contributes to chromosome congression in male mouse meiosis

Inés Berenguer et al.Nov 2, 2021
ABSTRACT Chromosome segregation requires that centromeres properly attach to spindle microtubules. This is an essential step towards the accuracy of cell division and therefore must be precisely regulated in both mitosis and meiosis. One of the main centromeric regulatory signaling pathways is the Haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres. In mitosis, Haspin kinase phosphorylates H3 at threonine 3 (H3T3ph), the essential histone mark that recruits the CPC whose catalytic component is Aurora B kinase. To date, no data has yet been presented about the action of the centromeric Haspin-H3T3ph-CPC pathway in mammalian male meiosis. We have analyzed the consequences of Haspin chemical inhibition in cultured spermatocytes using LDN-192960. Our in vitro studies suggest that Haspin kinase activity is required for proper chromosome congression during both meiotic divisions and for the recruitment of phosphorylated Aurora B at meiotic centromeres. These results have been confirmed by the characterization of the meiotic phenotype of the genetic mouse model Haspin -/- , which displays similar defects. In addition, our work demonstrates that the absence of H3T3ph histone mark does not alter SGO2 localization to meiotic centromeres. These results add new and relevant information regarding the regulation of centromere function during meiosis.
7
Citation1
0
Save
0

Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis

Andrea Enguita-Marruedo et al.May 22, 2018
Homologous recombination (HR) is the principal mechanism of DNA repair acting during meiosis and is fundamental for the segregation of chromosomes and the increase of genetic diversity. Nevertheless, non-homologous end joining (NHEJ) mechanisms also act during meiosis, mainly in response to exogenously-induced DNA damage in late stages of first meiotic prophase. In order to better understand the relationship between these two repair pathways, we studied the response to DNA damage during male mouse meiosis after gamma radiation. We clearly discerned two types of responses immediately after treatment. From leptotene to early pachytene, exogenous damage triggered the massive presence of γH2AX throughout the nucleus, which was associated with DNA repair mediated by HR components (DMC1 and RAD51). This early pathway finished with the sequential removal of DMC1 and RAD51 and was no longer inducible at mid pachytene. However, from mid pachytene to diplotene, γH2AX appeared as large discrete foci. This late repair pattern was mediated first by NHEJ, involving Ku70/80 and XRCC4, which were constitutively present, and 53BP1, which appeared at sites of damage soon after irradiation. Nevertheless, 24 hours after irradiation, a HR pathway involving RAD51 but not DMC1 mostly replaced NHEJ. Additionally, we observed the occurrence of synaptonemal complex bridges between bivalents, most likely representing chromosome translocation events that may involve DMC1, RAD51 or 53BP1. Our results reinforce the idea that the early "meiotic" repair pathway that acts by default at the beginning of meiosis is replaced from mid pachytene onwards by a "somatic-like" repair pattern. This shift might be important to resolve DNA damage (either endogenous or exogenous) that could not be repaired by the early meiotic mechanisms, for instance those in the sex chromosomes, which lack a homologous chromosome to repair with. This transition represents another layer of functional changes that occur in meiotic cells during mid pachytene, in addition to epigenetic reprograming, reactivation of transcription, expression of a new gene profile and acquisition of competence to proceed to metaphase.
0

B Chromosome Transcriptional Inactivation in the Spermatogenesis of the Grasshopper Eyprepocnemis plorans

J. Santos et al.Nov 25, 2024
Background/Objectives: We analyzed the relationship between synapsis, recombination, and transcription during the spermatogenesis of the grasshopper Eyprepocnemis plorans carrying B chromosomes (type B1). Methods: The progression of synapsis was interpreted according to the dynamics of the cohesin subunit SMC3 axes. DNA double-strand breaks were revealed by RAD51 immunolabeling, while transcriptional activity was determined by the presence of RNA polymerase II phosphorylated at serine 2 (pRNApol II) immunolabeling. The two repressive epigenetic modifications, histone H3 methylated at lysine 9 (H3K9me3) and histone H2AX phosphorylated at serine 139 (γ-H2AX), were employed to reveal transcriptional inactivity. Results: During prophase I, spermatocytes with one B1 chromosome showed overall transcription except in the regions occupied by both the X and the B1 chromosomes. This transcriptional inactivity was accompanied by the accumulation of repressive epigenetic modifications. When two B1 chromosomes were present, they could appear as a fully synapsed monochiasmatic bivalent, showing intense H3K9me3 labeling and absence of pRNApol II, while γ-H2AX labeling was similar to that shown by the autosomes. Conclusions: According to our results, B1 transcriptional inactivation was triggered in spermatogonia, long before the beginning of meiosis, and was accompanied by H3K9me3 heterochromatinization that was maintained throughout spermatogenesis. Moreover, when two B1 were present, the transcriptional inactivation did not preclude synapsis and recombination achievement by these chromosomes.