LH
Lin He
Author with expertise in MicroRNA Regulation in Cancer and Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(77% Open Access)
Cited by:
8,897
h-index:
40
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

miR-19 is a key oncogenic component of mir-17-92

Virginie Olive et al.Dec 15, 2009
Recent studies have revealed the importance of multiple microRNAs (miRNAs) in promoting tumorigenesis, among which mir-17-92/Oncomir-1 exhibits potent oncogenic activity. Genomic amplification and elevated expression of mir-17-92 occur in several human B-cell lymphomas, and enforced mir-17-92 expression in mice cooperates with c-myc to promote the formation of B-cell lymphomas. Unlike classic protein-coding oncogenes, mir-17-92 has an unconventional gene structure, where one primary transcript yields six individual miRNAs. Here, we functionally dissected the individual components of mir-17-92 by assaying their tumorigenic potential in vivo. Using the Eμ-myc model of mouse B-cell lymphoma, we identified miR-19 as the key oncogenic component of mir-17-92 , both necessary and sufficient for promoting c-myc -induced lymphomagenesis by repressing apoptosis. The oncogenic activity of miR-19 is at least in part due to its repression of the tumor suppressor Pten . Consistently, miR-19 activates the Akt–mTOR (mammalian target of rapamycin) pathway, thereby functionally antagonizing Pten to promote cell survival. Our findings reveal the essential role of miR-19 in mediating the oncogenic activity of mir-17-92, and implicate the functional diversity of mir-17-92 components as the molecular basis for its pleiotropic effects during tumorigenesis.
0
Citation573
0
Save
0

miR-34 miRNAs provide a barrier for somatic cell reprogramming

Yong Choi et al.Oct 23, 2011
Somatic reprogramming efficiency by expression of defined transcription factors can be enhanced by deletion of p53. He and colleagues found that the microRNA miR-34, which is induced by p53 during reprogramming, inhibits reprogramming, partly by direct repression of pluripotency factors. Deletion of Mir34 from mice increases reprogramming efficiency and kinetics without affecting self-renewal and differentiation. Somatic reprogramming induced by defined transcription factors is a low-efficiency process that is enhanced by p53 deficiency1,2,3,4,5. So far, p21 is the only p53 target shown to contribute to p53 repression of iPSC (induced pluripotent stem cell) generation1,3, indicating that additional p53 targets may regulate this process. Here, we demonstrate that miR-34 microRNAs (miRNAs), particularly miR-34a, exhibit p53-dependent induction during reprogramming. Mir34a deficiency in mice significantly increased reprogramming efficiency and kinetics, with miR-34a and p21 cooperatively regulating somatic reprogramming downstream of p53. Unlike p53 deficiency, which enhances reprogramming at the expense of iPSC pluripotency, genetic ablation of Mir34a promoted iPSC generation without compromising self-renewal or differentiation. Suppression of reprogramming by miR-34a was due, at least in part, to repression of pluripotency genes, including Nanog, Sox2 and Mycn (also known as N-Myc). This post-transcriptional gene repression by miR-34a also regulated iPSC differentiation kinetics. miR-34b and c similarly repressed reprogramming; and all three miR-34 miRNAs acted cooperatively in this process. Taken together, our findings identified miR-34 miRNAs as p53 targets that play an essential role in restraining somatic reprogramming.
0
Citation372
0
Save
0

Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes

Sean Chen et al.May 6, 2016
The CRISPR/Cas9 system has been employed to efficiently edit the genomes of diverse model organisms. CRISPR-mediated mouse genome editing is typically accomplished by microinjection of Cas9 DNA/RNA and single guide RNA (sgRNA) into zygotes to generate modified animals in one step. However, microinjection is a technically demanding, labor-intensive, and costly procedure with poor embryo viability. Here, we describe a simple and economic electroporation-based strategy to deliver Cas9/sgRNA ribonucleoproteins into mouse zygotes with 100% efficiency for in vivo genome editing. Our methodology, designated as CRISPR RNP Electroporation of Zygotes (CRISPR-EZ), enables highly efficient and high-throughput genome editing in vivo, with a significant improvement in embryo viability compared with microinjection. Using CRISPR-EZ, we generated a variety of editing schemes in mouse embryos, including indel (insertion/deletion) mutations, point mutations, large deletions, and small insertions. In a proof-of-principle experiment, we used CRISPR-EZ to target the tyrosinase (Tyr) gene, achieving 88% bi-allelic editing and 42% homology-directed repair-mediated precise sequence modification in live mice. Taken together, CRISPR-EZ is simple, economic, high throughput, and highly efficient with the potential to replace microinjection for in vivo genome editing in mice and possibly in other mammals. The CRISPR/Cas9 system has been employed to efficiently edit the genomes of diverse model organisms. CRISPR-mediated mouse genome editing is typically accomplished by microinjection of Cas9 DNA/RNA and single guide RNA (sgRNA) into zygotes to generate modified animals in one step. However, microinjection is a technically demanding, labor-intensive, and costly procedure with poor embryo viability. Here, we describe a simple and economic electroporation-based strategy to deliver Cas9/sgRNA ribonucleoproteins into mouse zygotes with 100% efficiency for in vivo genome editing. Our methodology, designated as CRISPR RNP Electroporation of Zygotes (CRISPR-EZ), enables highly efficient and high-throughput genome editing in vivo, with a significant improvement in embryo viability compared with microinjection. Using CRISPR-EZ, we generated a variety of editing schemes in mouse embryos, including indel (insertion/deletion) mutations, point mutations, large deletions, and small insertions. In a proof-of-principle experiment, we used CRISPR-EZ to target the tyrosinase (Tyr) gene, achieving 88% bi-allelic editing and 42% homology-directed repair-mediated precise sequence modification in live mice. Taken together, CRISPR-EZ is simple, economic, high throughput, and highly efficient with the potential to replace microinjection for in vivo genome editing in mice and possibly in other mammals.
0
Citation303
0
Save
0

The miR-17 ∼ 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma

Tamar Uziel et al.Feb 7, 2009
Medulloblastomas (MBs) are the most common brain tumors in children. Some are thought to originate from cerebellar granule neuron progenitors (GNPs) that fail to undergo normal cell cycle exit and differentiation. Because microRNAs regulate numerous aspects of cellular physiology and development, we reasoned that alterations in miRNA expression might contribute to MB. We tested this hypothesis using 2 spontaneous mouse MB models with specific initiating mutations, Ink4c-/-; Ptch1+/- and Ink4c-/-; p53-/-. We found that 26 miRNAs showed increased expression and 24 miRNAs showed decreased expression in proliferating mouse GNPs and MBs relative to mature mouse cerebellum, regardless of genotype. Among the 26 overexpressed miRNAs, 9 were encoded by the miR-17 approximately 92 cluster family, a group of microRNAs implicated as oncogenes in several tumor types. Analysis of human MBs demonstrated that 3 miR-17 approximately 92 cluster miRNAs (miR-92, miR-19a, and miR-20) were also overexpressed in human MBs with a constitutively activated Sonic Hedgehog (SHH) signaling pathway, but not in other forms of the disease. To test whether the miR-17 approximately 92 cluster could promote MB formation, we enforced expression of these miRNAs in GNPs isolated from cerebella of postnatal (P) day P6 Ink4c-/-; Ptch1+/- mice. These, but not similarly engineered cells from Ink4c-/-; p53-/- mice, formed MBs in orthotopic transplants with complete penetrance. Interestingly, orthotopic mouse tumors ectopically expressing miR-17 approximately 92 lost expression of the wild-type Ptch1 allele. Our findings suggest a functional collaboration between the miR-17 approximately 92 cluster and the SHH signaling pathway in the development of MBs in mouse and man.
0
Citation272
0
Save
0

A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression

Nobuhiro Okada et al.Feb 14, 2014
As bona fide p53 transcriptional targets, miR-34 microRNAs (miRNAs) exhibit frequent alterations in many human tumor types and elicit multiple p53 downstream effects upon overexpression. Unexpectedly, miR-34 deletion alone fails to impair multiple p53-mediated tumor suppressor effects in mice, possibly due to the considerable redundancy in the p53 pathway. Here, we demonstrate that miR-34a represses HDM4 , a potent negative regulator of p53, creating a positive feedback loop acting on p53. In a Kras -induced mouse lung cancer model, miR-34a deficiency alone does not exhibit a strong oncogenic effect. However, miR-34a deficiency strongly promotes tumorigenesis when p53 is haploinsufficient, suggesting that the defective p53– miR-34 feedback loop can enhance oncogenesis in a specific context. The importance of the p53/ miR-34 /HDM4 feedback loop is further confirmed by an inverse correlation between miR-34 and full-length HDM4 in human lung adenocarcinomas. In addition, human lung adenocarcinomas generate an elevated level of a short HDM4 isoform through alternative polyadenylation. This short HDM4 isoform lacks miR-34 -binding sites in the 3′ untranslated region (UTR), thereby evading miR-34 regulation to disable the p53- miR-34 positive feedback. Taken together, our results elucidated the intricate cross-talk between p53 and miR-34 miRNAs and revealed an important tumor suppressor effect generated by this positive feedback loop.
0
Citation271
0
Save
0

Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines

Sanjay Patel et al.Apr 18, 2019
Abstract Protein therapy holds great promise for treating a variety of diseases. To act on intracellular targets, therapeutic proteins must cross the plasma membrane. This has previously been achieved by covalent attachment to a variety of cell-penetrating peptides (CPPs). However, there is limited information on the relative performance of CPPs in delivering proteins to cells, specifically the cytosol and other intracellular locations. Here we use green fluorescent protein (GFP) as a model cargo to compare delivery capacity of five CPP sequences (Penetratin, R8, TAT, Transportan, Xentry) and cyclic derivatives in different human cell lines (HeLa, HEK, 10T1/2, HepG2) representing different tissues. Confocal microscopy analysis indicates that most fusion proteins when incubated with cells at 10 µM localise to endosomes. Quantification of cellular uptake by flow cytometry reveals that uptake depends on both cell type (10T1/2 > HepG2 > HeLa > HEK), and CPP sequence (Transportan > R8 > Penetratin≈TAT > Xentry). CPP sequence cyclisation or addition of a HA-sequence increased cellular uptake, but fluorescence was still contained in vesicles with no evidence of endosomal escape. Our results provide a guide to select CPP for endosomal/lysosomal delivery and a basis for developing more efficient CPPs in the future.
0
Citation212
0
Save
Load More