EL
Emmanuelle Lemyre
Author with expertise in Genomic Rearrangements and Copy Number Variations
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
1,327
h-index:
19
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome wide analysis of gene dosage in 24,092 individuals shows that 10,000 genes modulate cognitive ability

Guillaume Huguet et al.Apr 5, 2020
ABSTRACT Genomic Copy Number Variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect-size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect-sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs >50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect-size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of IQ when duplicated or deleted, respectively. Effect-sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect-sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect-size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect-sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.
0
Citation2
0
Save
0

Comprehensive EHMT1 variants analysis broadens genotype-phenotype associations and molecular mechanisms in Kleefstra syndrome

Dmitrijs Rots et al.Jul 1, 2024
The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.
0
Citation1
0
Save
0

Bi‐allelic variants in MYH3 cause recessively‐inherited arthrogryposis

Burcin Morali et al.Jun 10, 2024
Abstract Arthrogryposis is a clinical feature defined by congenital joint contractures in two or more different body areas which occurs in between 1/3000 and 1/5000 live births. Variants in multiple genes have been associated with distal arthrogryposis syndromes. Heterozygous variants in MYH3 have been identified to cause the dominantly‐inherited distal arthrogryposis conditions, Freeman–Sheldon syndrome, Sheldon–Hall syndrome, and multiple pterygium syndrome. In contrast, MYH3 variants underlie both dominantly and recessively inherited Contractures, Pterygia, and Spondylocarpotarsal Fusion syndromes (CPSFS) which are characterized by extensive bony abnormalities in addition to congenital contractures. Here we report two affected sibs with distal arthrogryposis born to unaffected, distantly related parents. Sequencing revealed that both sibs were homozygous for two ultra‐rare MYH3 variants, c.3445G>A (p.Glu1149Lys) and c.4760T>C (p.Leu1587Pro). Sequencing and deletion/duplication analysis of 169 other arthrogryposis genes yielded no other compelling candidate variants. This is the first report of biallelic variants in MYH3 being implicated in a distal arthrogryposis phenotype without the additional features of CPSFS. Thus, akin to CPSFS, both dominant and recessively inherited distal arthrogryposis can be caused by variants in MYH3 .