AM
André Minoche
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
2,384
h-index:
31
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems

André Minoche et al.Jan 1, 2011
The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms.
0
Citation592
0
Save
0

The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)

Juliane Dohm et al.Dec 18, 2013
Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.
0
Citation572
0
Save
1

Environmental and genetic disease modifiers of haploinsufficiency of A20

Nathan Zammit et al.Mar 20, 2022
ABSTRACT Monogenic diseases can often manifest diverse clinical phenotypes and cause diagnostic dilemmas. While monoallelic loss-of-function variants in TNFAIP3 (Haploinsufficiency of A20; HA20) cause a highly penetrant autoinflammatory disease, the variable expressivity suggest a role for additional genetic and environmental disease modifiers. Here, we identify critically ill children who inherited a family-specific TNFAIP3 deletion from one of their otherwise healthy parents. Each of the probands also inherited in trans a subtle loss-of-function I207L TNFAIP3 variant that is common in Oceania, originally introgressed from Denisovans. Modelling this compound heterozgous state in mice under specific pathogen free conditions demonstrated a reduced threshold to break immune tolerance. Exaggerated immune responses were precipitated by inheriting the two genetic hits on the TNFAIP3 checkpoint coupled with increasing the microbial challenge to immune tolerance, either by co-housing with pet store mice carrying a wild microbial burden or by transient dietary exposure to a chemical that diminishes the intestinal mucin barrier separating gut microbes from immune sensing systems. These data illuminate second-hit genetic and environmental modifiers contributing to complex inflammatory and autoimmune disease. Increased mechanistic understanding of the presence and contribution of disease modifiers will aid diagnostic and prognostic patient stratification and potentially reveal novel therapeutic opportunities.
1
Citation1
0
Save
11

Desert Dingo (Canis lupus dingo) genome provides insights into their role in the Australian ecosystem

Sonu Yadav et al.Nov 16, 2020
Abstract The dingo is Australia’s iconic top-order predator and arrived on the continent between 5,000-8,000 years ago. To provide an unbiased insight into its evolutionary affiliations and biological interactions, we coupled long-read DNA sequencing with a multiplatform scaffolding approach to produce an ab initio genome assembly of the desert dingo (85X coverage) we call CanLup_DDS. We compared this genome to the Boxer (CanFam3.1) and German Shepherd dog (CanFam_GSD) assemblies and characterized lineage-specific and shared genetic variation ranging from single– to megabase pair–sized variants. We identified 21,483 dingo-specific and 16,595 domestic dog-specific homozygous structural variants mediating genic and putative regulatory changes. Comparisons between the dingo and domestic dog builds detected unique inversions on Chromosome 16, structural variations in genes linked with starch metabolism, and seven differentially methylated genes. To experimentally assess genomic differences 17 dingoes and 15 German Shepherd dogs were fed parallel diets for 14 days. In dingoes, low AMY2B copy number and serum amylase levels are linked with high cholesterol and LDL levels. Gut microbiome analyses revealed enrichment of the family Clostridiaceae , which can utilize complex resistant starch, while scat metabolome studies identified high phenylethyl alcohol concentrations that we posit are linked with territory marking. Our study provides compelling genomic, microbiome, and metabolomic links showing the dingo has distinct physiology from domestic breed dogs with a unique role in the ecosystem.
11
0
Save
0

The genome of Ectocarpus subulatus – a highly stress-tolerant brown alga

Simon Dittami et al.Apr 25, 2018
Brown algae are multicellular photosynthetic stramenopiles that colonize marine rocky shores worldwide. Ectocarpus sp. Ec32 has been established as a genomic model for brown algae. Here we present the genome and metabolic network of the closely related species, Ectocarpus subulatus Kützing, which is characterized by high abiotic stress tolerance. Since their separation, both strains show new traces of viral sequences and the activity of large retrotransposons, which may also be related to the expansion of a family of chlorophyll-binding proteins. Further features suspected to contribute to stress tolerance include an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defence compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. Overall, E. subulatus has mainly lost members of gene families down-regulated in low salinities, and conserved those that were up-regulated in the same condition. However, 96% of genes that differed between the two examined Ectocarpus species, as well as all genes under positive selection, were found to encode proteins of unknown function. This underlines the uniqueness of brown algal stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies.